zoukankan      html  css  js  c++  java
  • java实现第四届蓝桥杯大臣的旅费

    大臣的旅费

    题目描述
    很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。

    为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
    
    J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。
    
    聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。
    
    J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?
    

    输入格式:
    输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数
    城市从1开始依次编号,1号城市为首都。
    接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)
    每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。

    输出格式:
    输出一个整数,表示大臣J最多花费的路费是多少。

    样例输入:
    5
    1 2 2
    1 3 1
    2 4 5
    2 5 4

    样例输出:
    135

    样例说明:
    大臣J从城市4到城市5要花费135的路费。

    根据资源限制尽可能考虑支持更大的数据规模。

    资源约定:
    峰值内存消耗(含虚拟机) < 64M
    CPU消耗 < 5000ms

    请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

    所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。
    注意:不要使用package语句。不要使用jdk1.6及以上版本的特性。
    注意:主类的名字必须是:Main,否则按无效代码处理。

      PS:
        这道题就是求一棵树间两点最长距离,即树的直径。具体求法为 先从根节点出发用dfs求得距离根节点最远的节点,设为u,再从u点出发,用dfs求得距离u最远的节点,设为v,则d[u][v]即u,v节点的距离就为树的直径。
    
    证明如下:(不是我证明的)
    
    为了阐述清楚证明,首先作如下严格定义:
    1。我们用a~b表示树中任意两个结点a,b之间的唯一路径,a~b之间可以有0个或多个结点;
    
    用x in a~b表示结点x处于路径a,b上,即存在形如a~x~b的路径(这里x可以和a或b重合);
    
    用符号a-b表示a,b直接相邻。
    
    
    定理5: 设r是树T的根,u是距离r最远的结点,v是距离u最远的结点。则树的直径就是d(u, v)。
    
    
    证明:设a, b是除了u,v以外的另外两个叶节点。设x = f(f(a, b), u)。即x是a,b,u三个节点的最近公共祖先。
    
    
    根据引理4,一定有 x in u~a 或 x in u~b。不妨设x in u~b 成立。
    于是就有u~x~b这条路径,即
       d(u,b) = d(u,x)+d(x,b) ......(1)
    于是
        d(r,u) >= d(r,a)                    // 因为u是距离r最远的点
    ==> d(r,x) + d(x,u) >= d(r,x) + d(x,a)  // 因为根据公共祖先的定义,x in r~u 且 x in r~a
    ==> d(u,x) >= d(x,a) ........
    
    (2)于是
    d(u,v) >= d(u,b)          // 因为v是距离u最远的点
       = d(u,x)+ d(x,b) // 根据(1)式
      >= d(x,a) + d(x,b) // 根据(2)式  
      >= d(a,b)          // 根据引理2
    
    
    所以对于除了u,v外任意的叶节点a,b,总有d(u, v)>= d(a,b)。
    如果a,b中有一个是u,v之一,显然也有d(u, v)>=d(a,b)。
    再根据引理1和树的半径的定义,可知d(u,v)就是T的直径。
    
     
     
    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.Scanner;
     
    //动态链表ArrayList
    class Vertex{
    	ArrayList<Integer> V=new ArrayList();
    }
    class Edge{
    	ArrayList<Integer> E=new ArrayList();
    }
     
    public class Main {
     
        final static int INF=0X3f3f3f3f;
        final static int maxn=100000;//开100000数组才过,我r
        static Vertex v[]=new Vertex[maxn+5];//v[i]存储与i相邻接的节点
        static Edge e[]=new Edge[maxn+5];//e[i]存储与i相邻接的边,与v[i]一一对应
        static boolean vis[]=new boolean[maxn+5];//防止重复访问
        static int dis[]=new int [maxn+5];//存储原始节点到各节点的dfs距离
        
        static void init(int n)//初始化
        {
        	for(int i=0;i<n;i++)
        	{
        		v[i]=new Vertex();
        		e[i]=new Edge();
        	}
        }
       
      
        static void dfs(int a)
        {
        	int len=v[a].V.size();
        	vis[a]=true;
        	for(int i=0;i<len;i++)//遍历邻接节点
        	{
        		int j=v[a].V.get(i);
        		if(!vis[j]&&e[a].E.get(i)!=INF)
        		{
        			
        			vis[j]=true;
        			dis[j]=dis[a]+e[a].E.get(i);
        			//System.out.println(a+" "+j+" "+dis[j]);
        			dfs(j);
        			vis[j]=false;//回溯
        		}
        	}
        }
       
        public static void main(String[] args) {
            
           Scanner cin = new Scanner(System.in);
           	int n=cin.nextInt();
           	
        	init(n);
        	for(int i=0;i<n-1;i++)
        	{
        		int a=cin.nextInt();
        		int b=cin.nextInt();
        		int d=cin.nextInt();
        		v[a-1].V.add(b-1);//节点从零开始
        		e[a-1].E.add(d);
        		v[b-1].V.add(a-1);
        		e[b-1].E.add(d);
        	}
        	Arrays.fill(vis,false);
        	Arrays.fill(dis,INF);
        	dis[0]=0;
        	dfs(0);//第一次遍历
        	long max=-1;
        	int temp=-1;
        	for(int i=0;i<n;i++)
        	{
        		if(dis[i]>max)
        		{
        			max=dis[i];
        			temp=i;
        		}
        	}
        	//System.out.println(temp);
        	
        	Arrays.fill(vis,false);
        	Arrays.fill(dis,INF);
        	dis[temp]=0;
        	dfs(temp);//第二次遍历
        	long ans=-1;//防止越界
    		for(int i=0;i<n;i++)
        	{
        		if(dis[i]>ans)
        		{
        			ans=dis[i];
        			temp=i;
        		}
        	}
    		//System.out.println(ans);
    		ans=ans*10+ans*(ans+1)/2;//如果ans是int的话,有可能越界
    		System.out.println(ans);
    		cin.close();
        }
     
    }
    
  • 相关阅读:
    广播的最佳实践---实现强制下线功能
    广播的最佳实践---实现强制下线功能
    使用本地广播
    使用本地广播
    关于Win7固态优盘的优化方法
    关于Win7固态优盘的优化方法
    在屏幕中使用评分组件
    在屏幕中使用评分组件
    【NYOJ】[65]另一种阶乘问题
    【NYOJ】[65]另一种阶乘问题
  • 原文地址:https://www.cnblogs.com/a1439775520/p/13077174.html
Copyright © 2011-2022 走看看