zoukankan      html  css  js  c++  java
  • 第五届蓝桥杯C++B组国(决)赛真题

    解题代码部分来自网友,如果有不对的地方,欢迎各位大佬评论

    题目1、年龄巧合

    小明和他的表弟一起去看电影,有人问他们的年龄。小明说:今年是我们的幸运年啊。我出生年份的四位数字加起来刚好是我的年龄。表弟的也是如此。已知今年是2014年,并且,小明说的年龄指的是周岁。
    请推断并填写出小明的出生年份。

    这是一个4位整数,请通过浏览器提交答案,不要填写任何多余的内容(比如,他表弟的出生年份,或是他们的年龄等等)

    1988
    public class Main {
        
        public static void main(String[] args) {
            for(int i = 1900;i <= 2014;i++) {
                int a = i / 1000 + i / 100 % 10 + i / 10 % 10 + i % 10;
                if(a == 2014 - i)
                    System.out.println("i = "+i);
            }
            
        }
    }
    
    题目2、出栈次序

    X星球特别讲究秩序,所有道路都是单行线。一个甲壳虫车队,共16辆车,按照编号先后发车,夹在其它车流中,缓缓前行。

    路边有个死胡同,只能容一辆车通过,是临时的检查站,如图【p1.png】所示。

    X星球太死板,要求每辆路过的车必须进入检查站,也可能不检查就放行,也可能仔细检查。

    如果车辆进入检查站和离开的次序可以任意交错。那么,该车队再次上路后,可能的次序有多少种?

    为了方便起见,假设检查站可容纳任意数量的汽车。

    显然,如果车队只有1辆车,可能次序1种;2辆车可能次序2种;3辆车可能次序5种。

    现在足足有16辆车啊,亲!需要你计算出可能次序的数目。

    这是一个整数,请通过浏览器提交答案,不要填写任何多余的内容(比如说明性文字)。

    35357670

    在这里插入图片描述

    public class Main {
        public static int count = 1;
        
        public void dfs(int step, int num, int car) {
            if(step == num)  //当所有排队的汽车均已进栈后
                return;
            dfs(step + 1, num, car + 1);
            if(car > 0) {   //当栈不为空时,可以选择出栈
                count++;
                dfs(step, num, car - 1);
            }
        }
            
        public static void main(String[] args) {
            Main test = new Main();
            test.dfs(0, 16, 0);
            System.out.println("DFS: "+count);
            int r = 1;
            for(int i = 2;i <= 16;i++) {
                r = r * (4 * i - 2) / (i + 1);  //借鉴网上网友思想:利用卡特兰数
            }
            System.out.println(r);
        }
    }
    
    题目3、信号匹配
    从X星球接收了一个数字信号序列。
    
        现有一个已知的样板序列。需要在信号序列中查找它首次出现的位置。这类似于串的匹配操作。
    
        如果信号序列较长,样板序列中重复数字较多,就应当注意比较的策略了。可以仿照串的KMP算法,进行无回溯的匹配。这种匹配方法的关键是构造next数组。
    
        next[i] 表示第i项比较失配时,样板序列向右滑动,需要重新比较的项的序号。如果为-1,表示母序列可以进入失配位置的下一个位置进行新的比较。
    
        下面的代码实现了这个功能,请仔细阅读源码,推断划线位置缺失的代码。
    
    // 生成next数组 
    int* make_next(int pa[], int pn)
    {
        int* next = (int*)malloc(sizeof(int)*pn);
        next[0] = -1;
        int j = 0;
        int k = -1;
        while(j < pn-1){
            if(k==-1 || pa[j]==pa[k]){
                j++;
                k++;
                next[j] = k;
            }
            else
                k = next[k];
        }
        
        return next;
    }
    
    // da中搜索pa, da的长度为an, pa的长度为pn 
    int find(int da[], int an, int pa[], int pn)
    {
        int rst = -1;
        int* next = make_next(pa, pn);
        int i=0;  // da中的指针 
        int j=0;  // pa中的指针
        int n = 0;
        while(i<an){
            n++;
            if(da[i]==pa[j] || j==-1){
                i++;
                j++;
            }
            else
                __________________________;  //填空位置
            
            if(j==pn) {
                rst = i-pn;
                break;
            }
        }
        
        free(next);
            
        return rst;
    }
    
    int main()
    {
        int da[] = {1,2,1,2,1,1,2,1,2,1,1,2,1,1,2,1,1,2,1,2,1,1,2,1,1,2,1,1,1,2,1,2,3};
        int pa[] = {1,2,1,1,2,1,1,1,2};
        
        int n = find(da, sizeof(da)/sizeof(int), pa, sizeof(pa)/sizeof(int));
        printf("%d
    ", n);
        
        return 0;
    }
    
    
    
    注意:通过浏览器提交答案。只填写缺少的内容,不要填写任何多余的内容(例如:说明性文字或已有符号)
    
    
    
    j = next[j]
    
    题目4、生物芯片

    X博士正在研究一种生物芯片,其逻辑密集度、容量都远远高于普通的半导体芯片。
    博士在芯片中设计了 n 个微型光源,每个光源操作一次就会改变其状态,即:点亮转为关闭,或关闭转为点亮。

    这些光源的编号从 1 到 n,开始的时候所有光源都是关闭的。

    博士计划在芯片上执行如下动作:

    所有编号为2的倍数的光源操作一次,也就是把 2 4 6 8 … 等序号光源打开

    所有编号为3的倍数的光源操作一次, 也就是对 3 6 9 … 等序号光源操作,注意此时6号光源又关闭了。

    所有编号为4的倍数的光源操作一次。

    直到编号为 n 的倍数的光源操作一次。

    X博士想知道:经过这些操作后,某个区间中的哪些光源是点亮的。

    【输入格式】
    3个用空格分开的整数:N L R (L<R<N<10^15) N表示光源数,L表示区间的左边界,R表示区间的右边界。

    【输出格式】
    输出1个整数,表示经过所有操作后,[L,R] 区间中有多少个光源是点亮的。

    例如:
    输入:
    5 2 3
    程序应该输出:
    2

    再例如:
    输入:
    10 3 6
    程序应该输出:
    3

    资源约定:
    峰值内存消耗 < 256M
    CPU消耗 < 1000ms

    请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

    所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

    注意: main函数需要返回0
    注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
    注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。

    提交时,注意选择所期望的编译器类型。

    import java.util.Scanner;
    
    public class Main {
        
        public long getP(long X) {
            long count = 1;
            for(long i = 2;i <= X / 2;i++) {
                if(X % i == 0)
                    count++;
            }
            return count;
        }
        
        public void getResult(long N, long L, long R) {
            long result = 0;
            for(long i = L;i <= R;i++) {
                long count = getP(i);
                if((count&1) == 1)
                    result++;
            }
            System.out.println(result);
        }
        
        //完全平方数的因子数为奇数个,其中因子包含1
        public void getResult1(long N, long L, long R) {
            long result = R - L + 1;
            long start = (long) Math.sqrt(L);
            if(start * start < L)
                start = start + 1;
            for(;start * start <= R;start++) {
                if(start * start >= L && start * start <= R)
                    result--;
            }
            System.out.println("借鉴网友解法:"+result);
        }
        
        public static void main(String[] args) {
            Main test = new Main();
            Scanner in = new Scanner(System.in);
            long N = in.nextLong();
            long L = in.nextLong();
            long R = in.nextLong();
            test.getResult(N, L, R);
            test.getResult1(N, L, R);
        }
        
    }
    
    题目5、LOG大侠

    atm参加了速算训练班,经过刻苦修炼,对以2为底的对数算得飞快,人称Log大侠。
    一天,Log大侠的好友 drd 有一些整数序列需要变换,Log大侠正好施展法力…

    变换的规则是: 对其某个子序列的每个整数变为: [log_2 (x) + 1] 其中 [] 表示向下取整,就是对每个数字求以2为底的对数,然后取下整。
    例如对序列 3 4 2 操作一次后,这个序列会变成 2 3 2。

    drd需要知道,每次这样操作后,序列的和是多少。

    【输入格式】
    第一行两个正整数 n m 。
    第二行 n 个数,表示整数序列,都是正数。
    接下来 m 行,每行两个数 L R 表示 atm 这次操作的是区间 [L, R],数列序号从1开始。

    【输出格式】
    输出 m 行,依次表示 atm 每做完一个操作后,整个序列的和。

    例如,输入:
    3 3
    5 6 4
    1 2
    2 3
    1 3

    程序应该输出:
    10
    8
    6

    【数据范围】
    对于 30% 的数据, n, m <= 10^3
    对于 100% 的数据, n, m <= 10^5

    资源约定:
    峰值内存消耗 < 256M
    CPU消耗 < 1000ms

    请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

    所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

    注意: main函数需要返回0
    注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
    注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。

    提交时,注意选择所期望的编译器类型。

    import java.util.Scanner;
    
    public class Main {
        public static long sum = 0L;
        public static int[] number;
        public static long[] result;
        
        public int getLog2(int X) {
            int count = 0;
            while(X >= 2) {
                X = X / 2;
                count++;
            }
            return count;
        }
        
        public void getResult(int L, int R) {
            for(int i = L;i <= R;i++) {
                sum = sum - number[i];
                number[i] = getLog2(number[i]) + 1;
                sum = sum + number[i];
            }
        }
        
        public static void main(String[] args) {
            Main test = new Main();
            Scanner in = new Scanner(System.in);
            int n = in.nextInt();
            int m = in.nextInt();
            number = new int[n + 1];
            for(int i = 1;i <= n;i++) {
                number[i] = in.nextInt();
                sum = sum + number[i];
            }
            result = new long[m];
            for(int i = 0;i < m;i++) {
                int L = in.nextInt();
                int R = in.nextInt();
                test.getResult(L, R);
                result[i] = sum;
            }
            for(int i = 0;i < m;i++)
                System.out.println(result[i]);
        }
    }
    
    题目6、殖民地

    带着殖民扩张的野心,Pear和他的星际舰队登上X星球的某平原。为了评估这块土地的潜在价值,Pear把它划分成了M*N格,每个格子上用一个整数(可正可负)表示它的价值。

    Pear要做的事很简单——选择一些格子,占领这些土地,通过建立围栏把它们和其它土地隔开。对于M*N的格子,一共有(M+1)N+M(N+1)条围栏,即每个格子都有上下左右四个围栏;不在边界上的围栏被相邻的两个格子公用。大概如下图【p1.png】所示。

    图中,蓝色的一段是围栏,属于格子1和2;红色的一段是围栏,属于格子3和4。

    每个格子有一个可正可负的收益,而建围栏的代价则一定是正的。

    你需要选择一些格子,然后选择一些围栏把它们围起来,使得所有选择的格子和所有没被选的格子严格的被隔开。选择的格子可以不连通,也可以有“洞”,即一个连通块中间有一些格子没选。注意,若中间有“洞”,那么根据定义,“洞”和连通块也必须被隔开。

    Pear的目标很明确,花最小的代价,获得最大的收益。

    【输入数据】
    输入第一行两个正整数M N,表示行数和列数。
    接下来M行,每行N个整数,构成矩阵A,A[i,j]表示第i行第j列格子的价值。
    接下来M+1行,每行N个整数,构成矩阵B,B[i,j]表示第i行第j列上方的围栏建立代价。
    特别的,B[M+1,j]表示第M行第j列下方的围栏建立代价。
    接下来M行,每行N+1个整数,构成矩阵C,C[i,j]表示第i行第j列左方的围栏建立代价。
    特别的,C[i,N+1]表示第i行第N列右方的围栏建立代价。
    
    【输出数据】
    一行。只有一个正整数,表示最大收益。
    
    【输入样例1】
    3 3
    65 -6 -11
    15 65 32
    -8 5 66
    4 1 6
    7 3 11
    23 21 22
    5 25 22
    26 1 1 13
    16 3 3 4
    6 3 1 2
    
    程序应当输出:
    123
    
    【输入样例2】
    6 6
    72 2 -7 1 43 -12
    74 74 -14 35 5 3
    31 71 -12 70 38 66
    40 -6 8 52 3 78
    50 11 62 20 -6 61
    76 55 67 28 -19 68
    25 4 5 8 30 5
    9 20 29 20 6 18
    3 19 20 11 5 15
    10 3 19 23 6 24
    27 8 16 10 5 22
    28 14 1 5 1 24
    2 13 15 17 23 28
    24 11 27 16 12 13 27
    19 15 21 6 21 11 5
    2 3 1 11 10 20 9
    8 28 1 21 9 5 7
    16 20 26 2 22 5 12
    30 27 16 26 9 6 23
    
    程序应当输出
    870
    

    【数据范围】
    对于20%的数据,M,N<=4
    对于50%的数据,M,N<=15
    对于100%的数据,M,N<=200
    A、B、C数组(所有的涉及到的格子、围栏输入数据)绝对值均不超过1000。根据题意,A数组可正可负,B、C数组均为正整数。

    资源约定:
    峰值内存消耗 < 256M
    CPU消耗 < 3000ms

    请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。

    所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。

    注意: main函数需要返回0
    注意: 只使用ANSI C/ANSI C++ 标准,不要调用依赖于编译环境或操作系统的特殊函数。
    注意: 所有依赖的函数必须明确地在源文件中 #include , 不能通过工程设置而省略常用头文件。

    提交时,注意选择所期望的编译器类型。

    请原谅博主是个小白,以下代码只能通过部分测试用例,还望大佬及时评论
    import java.util.Scanner;
    
    public class Main {
        public static int m, n;
        public static int[][] A;
        public static int[][] B;
        public static int[][] C;
        public int[][] step = {{0,1},{1,0}}; //分表表示在M*N单元格中向右、向下行走一步
        public int[][] step1 = {{-1,0},{1,0},{0,-1},{0,1}};//分别表示向上、下、左、右行走一步
        
        public void init() {
            A = new int[m][n];
            B = new int[m + 1][n];
            C = new int[m][n + 1];
        }
        
        public void getResult() {
            int[][] judge = new int[n][m];
            for(int i = 0;i < n;i++)
                for(int j = 0;j < m;j++)
                    if(A[i][j] < 0)  //收益为负数,直接舍弃
                        judge[i][j] = -1;
            for(int i = 0;i < m;i++)
                for(int j = 0;j < n;j++) {
                    int v = B[i][j] + B[i + 1][j] + C[i][j] + C[i][j + 1];
                    A[i][j] = A[i][j] - v;
                    if(A[i][j] >= 0)  //减去围栏造价,收益不为负,一定收录
                        judge[i][j] = 1;
                }
            for(int i = 0;i < m;i++)   //处理相邻围栏重复问题
                for(int j = 0;j < n;j++) {
                    if(judge[i][j] == -1 || judge[i][j] == 0)
                        continue;
                    for(int k = 0;k < 2;k++) {
                        int x = i + step[k][0];
                        int y = j + step[k][1];
                        if(x < m && y < n) {
                            if(judge[x][y] == 1) {
                                if(k == 0) {
                                    A[i][j] = A[i][j] + C[x][y];
                                    A[x][y] = A[x][y] + C[x][y];
                                }
                                else {
                                    A[i][j] = A[i][j] + B[x][y];
                                    A[x][y] = A[x][y] + B[x][y];
                                }
                            }
                        }
                    }
                }
            //重新扫描,选取可能符合要求的单元格
            for(int i = 0;i < m;i++)
                for(int j = 0;j < n;j++) {
                    if(judge[i][j] != 1) {
                        for(int k = 0;k < 4;k++) {
                            int x = i + step1[k][0];
                            int y = j + step1[k][1];
                            if(x < m && y < n && x >= 0 && y >= 0 && judge[x][y] == 1) {
                                    if(k == 0) {
                                        A[i][j] = A[i][j] + 2 * B[x + 1][y];
                                    }
                                    else if(k == 1){
                                        A[i][j] = A[i][j] + 2 * B[x][y];
                                    } else if(k == 2) {
                                        A[i][j] = A[i][j] + 2 * C[x][y + 1];
                                    } else {
                                        A[i][j] = A[i][j] + 2 * C[x][y];
                                    }
                            }
                        }
                        if(A[i][j] >= 0)
                            judge[i][j] = 1;
                        else {
                            for(int k = 0;k < 4;k++) {
                                int x = i + step1[k][0];
                                int y = j + step1[k][1];
                                if(x < m && y < n && x >= 0 && y >= 0 && judge[x][y] == 1) {
                                        if(k == 0) {
                                            A[i][j] = A[i][j] - 2 * B[x + 1][y];
                                        }
                                        else if(k == 1){
                                            A[i][j] = A[i][j] - 2 * B[x][y];
                                        } else if(k == 2) {
                                            A[i][j] = A[i][j] - 2 * C[x][y + 1];
                                        } else {
                                            A[i][j] = A[i][j] - 2 * C[x][y];
                                        }
                                }
                            }
                        }
                    }
                }
            int sum = 0;
            for(int i = 0;i < m;i++) 
                for(int j = 0;j < n;j++)
                    if(A[i][j] >= 0)
                        sum = sum + A[i][j];
            System.out.println(sum);
        }
        
        public static void main(String[] args) {
            Main test = new Main();
            Scanner in = new Scanner(System.in);
            m = in.nextInt();
            n = in.nextInt();
            test.init();
            for(int i = 0;i < m;i++)
                for(int j = 0;j < n;j++)
                    A[i][j] = in.nextInt();
            for(int i = 0;i < m + 1;i++)
                for(int j = 0;j < n;j++)
                    B[i][j] = in.nextInt();
            for(int i = 0;i < m;i++)
                for(int j = 0;j < n + 1;j++)
                    C[i][j] = in.nextInt();
            test.getResult();
        }
    }
    
  • 相关阅读:
    C#3.0之神奇的Lambda表达式和Lambda语句
    Expression Tree 学习笔记(一)
    C#对象序列化与反序列化
    Linux Shell编程入门
    ora-03113或者ora-12573 通信通道的文件结束出现异常错误:核心转储
    如何实现文档在线预览
    使用npoi导入Excel
    判断时间(时:分)是否在某个时间段内
    程序员开发时遇到的那些缩写和名词(记录)
    git
  • 原文地址:https://www.cnblogs.com/a1439775520/p/13078147.html
Copyright © 2011-2022 走看看