zoukankan      html  css  js  c++  java
  • 线性回归模型练习

     

    单线性回归

    y=w*x+b

    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
    num_points = 1000
    vectors_set = []
    for i in range(num_points):
        x1 = np.random.normal(0.0, 0.55)
        y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
        vectors_set.append([x1, y1])
    
    # 生成一些样本
    x_data = [v[0] for v in vectors_set]
    y_data = [v[1] for v in vectors_set]
    
    plt.scatter(x_data,y_data,c='r')
    plt.show()

    tf.square()函数是求平方;tf.reduce_mean()是求均值

    # 生成1维的W矩阵,取值是[-1,1]之间的随机数
    with tf.name_scope('weight'):
        W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W')
    # 生成1维的b矩阵,初始值是0
    with tf.name_scope('bias'):
        b = tf.Variable(tf.zeros([1]), name='b')
    # 经过计算得出预估值y
    with tf.name_scope('y'):
        y = W * x_data + b
    
    # 以预估值y和实际值y_data之间的均方误差作为损失
    with tf.name_scope('loss'):
        loss = tf.reduce_mean(tf.square(y - y_data), name='loss')
    # 采用梯度下降法来优化参数,这里0.5是指定的学习率
    optimizer = tf.train.GradientDescentOptimizer(0.5)
    # 训练的过程就是最小化这个误差值
    train = optimizer.minimize(loss, name='train')
    
    sess = tf.Session()
    
    init = tf.global_variables_initializer()
    sess.run(init)
    
    # 初始化的W和b是多少
    print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))
    # 执行20次训练
    for step in range(20):
        sess.run(train)
        # 输出训练好的W和b
        print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))
    writer = tf.summary.FileWriter("logs/", sess.graph)

    plt.scatter(x_data,y_data,c='r')
    plt.plot(x_data,sess.run(W)*x_data+sess.run(b))
    plt.show()

    import tensorflow.compat.v1 as tf
    import numpy as np
    import matplotlib.pyplot as plt
    import os
    tf.disable_eager_execution() #保证sess.run()能够正常运行
    os.environ["CUDA_VISIBLE_DEVICES"]="0"
    #Parameters  
    learning_rate=0.01
    training_epochs=1000
    display_step=50
    #training Data  
    train_X=np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
    7.042,10.791,5.313,7.997,5.654,9.27,3.1])
    train_Y=np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
    2.827,3.465,1.65,2.904,2.42,2.94,1.3])
    n_samples=train_X.shape[0]
    #tf Graph Input  
    X=tf.placeholder("float")
    Y=tf.placeholder("float")
    #Set model weights  
    W=tf.Variable(np.random.randn(),name="weight")
    b=tf.Variable(np.random.randn(),name='bias')
    #Construct a linear model  
    pred=tf.add(tf.multiply(X,W),b)
    #Mean squared error  
    cost=tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples)
    # Gradient descent  
    optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    #Initialize the variables  
    init =tf.global_variables_initializer()
    #Start training  
    with tf.Session() as sess:
         sess.run(init)
    #Fit all training data  
         for epoch in range(training_epochs):
             for (x,y) in zip(train_X,train_Y):
                 sess.run(optimizer,feed_dict={X:x,Y:y})
    #Display logs per epoch step  
             if (epoch+1) % display_step==0:
                c=sess.run(cost,feed_dict={X:train_X,Y:train_Y})
                print("Epoch:" ,'%04d' %(epoch+1),"cost=","{:.9f}".format(c),"W=",sess.run(W),"b=",sess.run(b))
         print("Optimization Finished!")
         training_cost=sess.run(cost,feed_dict={X:train_X,Y:train_Y})
         print("Train cost=",training_cost,"W=",sess.run(W),"b=",sess.run(b))
    #Graphic display  
         plt.plot(train_X,train_Y,'ro',label='Original data')
         plt.plot(train_X,sess.run(W)*train_X+sess.run(b),label="Fitting line")
         plt.legend()
         plt.show()

  • 相关阅读:
    unity-疑难杂症(一)
    unity-【UI】点击交互(一)
    asp.net core 附加进程调试、指令等
    几种定时器(timer)的区别
    ObjectDisplay 对象属性展示 Display
    IEnumerable,ICollection,IList,List 比较
    Excel等格式文件从服务端调用导出
    Azure DevOps 与VS 2019
    从 数据库表 生成 项目实体 文件
    Border样式
  • 原文地址:https://www.cnblogs.com/a155-/p/14260203.html
Copyright © 2011-2022 走看看