zoukankan      html  css  js  c++  java
  • 第七次作业逻辑回归实践

    1.逻辑回归是怎么防止过拟合的?为什么正则化可以防止过拟合?(大家用自己的话介绍下)

    逻辑回归在算法层面是通过正则化来防止过拟合的,因为正则化是通过约束参数的范数使其不要太大,所以能够防止过拟合。

    2.用logiftic回归来进行实践操作,数据不限。

    import pandas as pd
    import numpy as np
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.metrics import classification_report
    from sklearn.metrics import mean_squared_error


    # 逻辑回归

    def logistic():
    # 分类
    column = ['数据编号', '属性1', '属性2', '属性3', '属性4', '属性5', '属性6', '属性7', '属性8', '属性9', '类别']
    # 读取数据

    data = pd.read_csv('D:\机器算法学习\逻辑回归实践\breast-cancer-wisconsin_6.csv', names=column)

    # 缺失值处理
    data = data.replace(to_replace='?', value=np.nan)
    data = data.dropna()

    # 数据分割
    x_train, x_test, y_train, y_test = train_test_split(data[column[1:10]], data[column[10]], test_size=0.3)

    # 特征值和目标值进行标准化处理(分别处理)
    std = StandardScaler()
    x_train = std.fit_transform(x_train)
    x_test = std.transform(x_test)

    # 逻辑回归预测
    lg = LogisticRegression()
    lg.fit(x_train, y_train)
    print(lg.coef_)
    lg_predict = lg.predict(x_test)
    print('准确率:', lg.score(x_test, y_test))
    print('召回率:', classification_report(y_test, lg_predict, labels=[2, 4], target_names=['良性', '恶性']))


    if __name__ == '__main__':
    logistic()

    实验结果如下

  • 相关阅读:
    搭建单区域DNS服务器
    安装一个KVM服务器
    配置HTTPS网站服务器
    部署并测试动态WSGI站点
    java内置的四大函数式接口
    java自定义异常类
    java方法重写的规定
    spring跨重定向传递数据
    SpringEl表达式(转)
    Spring中的@conditional注解
  • 原文地址:https://www.cnblogs.com/a188182/p/12804515.html
Copyright © 2011-2022 走看看