zoukankan      html  css  js  c++  java
  • Strange Towers of Hanoi

    Strange Towers of Hanoi

    解决4座塔的hanoi塔问题,即有四座塔,不妨编号1~4,在塔一上有n个环套在上面,从上到小直径依次变大,每次可以选择将一个环从塔一移动到任何一座塔,但要保证直径大的环套在直径小的环的下面,询问将所有的环从塔一移动到塔四的最少方案数。

    显然会联想到经典hanoi塔问题,即只有三座塔,不妨设(f_i)表示只有三座塔且有i个环套在塔一的最少将所有环移动到塔三的方案数,显然有

    [f_i=f_{i-1}+1+f_{i-1}=2f_{i-1}+1 ]

    边界:(f_0=0)

    含义即现将i-1个环从在三塔下塔一移动到塔二,再将最后一个在塔一的环移动到塔三,最后在三塔环境下移动第二座塔的i-1个环到塔三。

    同样地类比设(g_i)为将i个环在4塔下从塔一移动到塔四的最少方案数,很难有

    [g_i=min_{1leq k<i}{2g_k+f_{i-k}} ]

    边界:(g_0=0)

    含义即现将k个塔四塔环境下移动到塔二,剩下的塔在三塔环境下全部移动到第4塔,最后将塔二的k个环在4塔环境下移动到塔四。

    之所以为什么是对的,我想这是我的未解之谜之一了。

    参考代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #define il inline
    #define ri register
    #define ll long long
    using namespace std;
    ll f[13],g[13];
    template<class free>
    il free Min(free,free);
    int main(){
    	memset(g,0x3f,sizeof(g)),g[1]=1,g[0]=0;
    	for(int i(1),j;i<=12;++i){
    		f[i]=2*f[i-1]+1;
    		for(j=1;j<i;++j)
    			g[i]=Min(g[i],2*g[j]+f[i-j]);
    		printf("%lld
    ",g[i]);
    	}
    	return 0;
    }
    template<class free>
    il free Min(free a,free b){
    	return a<b?a:b;
    }
    
  • 相关阅读:
    OpenWRT解决因PPPOE丢包导致频繁掉线问题
    ArcGIS Server 9.3集群部署(多som+多soc)
    ArcGIS Server 9.3集群部署(多som+多soc)
    POJ2823 滑动窗口
    AOJ 0531 坐标离散化
    Office2010安装错误
    Cv运动分析与对象跟踪(转)
    FPS学习记录
    opencv基于HSV的肤色分割
    Haar特征
  • 原文地址:https://www.cnblogs.com/a1b3c7d9/p/11205170.html
Copyright © 2011-2022 走看看