zoukankan      html  css  js  c++  java
  • 给树染色

    给树染色

    给出一棵有n个节点的树,第i个点的权值为(a_i),根节点为r,现在你需要给所有点染色,一个点能够被染色,当且仅当它的父亲节点已经被染色(当然,根节点除外,可以直接被染色),而且对于一个点i染色的费用为( ext{第几次染色} imes a_i),询问最少的染色费用,(nleq 1000)

    注意到一个性质,就是当树中点权最大的点q的父亲被染色后,q会马上被染色,否则替换成另外一个点w,那么有(a_w<a_q),设这是第(e)次染色,显然这两次染色的交换不会影响到e次以前的和(e+2)次染色以后的染色,于是知道q先染色的对答案的影响为(e imes a_q+(e+1) imes a_w),w先染色的对答案的影响为(e imes a_w+a_q(e+1)),后者与前者做差,有(a_q-a_w>0),于是q先染色会更加优秀。

    再琢磨一下这个性质,q的父亲被染色了,那么q就会立刻被染色,这类似于两个点被强制捆绑在了一起,不妨进一步研究捆绑的性质,猜测捆绑以后的点权,设有点(x,y,z),设y,z已经被捆绑在了一起,那么对答案的影响只有两种可能(因为前面的染色次数,对大小关系的比较没有影响,第一段已经间接说明了这一点,一下全部省去),

    [a_x+2a_y+3a_z ext{和}a_y+2a_z+3a_x ]

    同样想着构造y,z同样的形式构成一个整体(因为最后点权得是一个固定的数字)和(x+2x+3x+...)(因为这样才能给出显然的证明)。

    因为要构造y,z一个整体,想到两边同时减z,有

    [a_x+2(a_y+a_z) ext{和}a_y+a_z+3a_x ]

    要构造(x+2x+3x+...),就想到同时加上一个(a_x),再除以2以后有

    [a_x+2frac{a_y+a_z}{2} ext{和}frac{a_y+a_z}{2}+2a_x ]

    这显然告诉我们y,z可以合并成一个点权为(frac{a_y+a_z}{2})的点,进一步推广,假设有u个点v被捆绑在一起,不妨假设这些点为(1,2,...,u),其中数字的顺序就是染色的顺序,再与点x考虑,只有两种情况

    [a_1+2a_2+...+ua_u+(u+1)x ]

    [x+2a_1+3a_2+...+(u+1)a_u ]

    同样加上(-a_2-2a_3...-(u-1)a_u+(u-1)x),再除以u,有

    [frac{a_1+a_2+...+a_u}{u}+2x ]

    [x+frac{a_1+a_2+...+a_u}{u} ]

    显然这就代表了(1,2,,,..u)这些点构成了一个整体,点权为(frac{sum_{i=1}^ua_i}{u})

    于是总上,我们有做法,每次在树中找到点权最大的点,然后将它与它的父亲合并,更改一下点权,并趁机记录合并后点中的染色的顺序,最后树只会剩下一个点,那么这个点的染色顺序也就是所求,依次为依据手动模拟一下就可算出答案,时间复杂度(O(n^2))

    后话:因为每次寻找到一个点权最大的点,这好像可以用优先队列,但是需要和父亲合并,也就是要支持动态修改,于是萎了,然后考虑用平衡树,需要找到父亲很麻烦,而且点权都相同的话,查找可以到(O(n)),故不想写了,如果各位像sxr一样强的人有办法,请联系我。

    参考代码:

    #include <iostream>
    #include <cstdio>
    #define il inline
    #define ri register
    #define Size 1500
    #define swap(x,y) x^=y^=x^=y
    using namespace std;
    struct point{
    	point *next;int to;
    }*pt,*head[Size];
    int pa[Size],a[Size],ans[Size],
    	tot;
    void dfs(int);
    il void read(int&),link(int,int);
    int main(){
    	int n,r,gzy(0);read(n),read(r);
    	for(int i(1);i<=n;++i)read(a[i]);
    	for(int i(1),u,v;i<n;++i)
    		read(u),read(v),link(u,v),pa[v]=u;dfs(r);
    	for(int i(1),j;i<=n;++i)
    		for(j=1;j<n;++j)
    			if(a[ans[j]]<a[ans[j+1]]&&pa[ans[j+1]]!=ans[j])
    				swap(ans[j],ans[j+1]);
    	for(int i(1);i<=n;++i)
    		gzy+=a[ans[i]]*i;printf("%d",gzy);
    	return 0;
    }
    void dfs(int x){ans[++tot]=x;
    	for(point *i(head[x]);
    		i!=NULL;i=i->next)dfs(i->to);
    }
    il void link(int u,int v){
    	pt=new point,pt->to=v;;
    	pt->next=head[u],head[u]=pt;
    }
    il void read(int &x){
    	x^=x;ri char c;while(c=getchar(),c<'0'||c>'9');
    	while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
    }
    
    
  • 相关阅读:
    WPF 命令基础
    委托 C#
    Volley网络请求框架的基本用法
    MailOtto 实现完美预加载以及源码解读
    Android_时间服务
    Android_Chronometer计时器
    Android_Json实例
    完结篇
    就快完结篇
    MySQL 选出日期时间最大的一条记录
  • 原文地址:https://www.cnblogs.com/a1b3c7d9/p/11217617.html
Copyright © 2011-2022 走看看