You have a team of N people. For a particular task, you can pick any non-empty subset of people. The cost of having x people for the task is xk.
Output the sum of costs over all non-empty subsets of people.
Only line of input contains two integers N (1 ≤ N ≤ 109) representing total number of people and k (1 ≤ k ≤ 5000).
Output the sum of costs for all non empty subsets modulo 109 + 7.
1 1
1
3 2
24
In the first example, there is only one non-empty subset {1} with cost 11 = 1.
In the second example, there are seven non-empty subsets.
- {1} with cost 12 = 1
- {2} with cost 12 = 1
- {1, 2} with cost 22 = 4
- {3} with cost 12 = 1
- {1, 3} with cost 22 = 4
- {2, 3} with cost 22 = 4
- {1, 2, 3} with cost 32 = 9
The total cost is 1 + 1 + 4 + 1 + 4 + 4 + 9 = 24.
分析:
表达式中出现了i的k次方,且n的值十分的大,k很小。
所以尝试用第二类斯特林的公式展开i的k次方。
是在n里面选i个,再在这i个里面选j个并排序的方案数。
相当于在n个里面取j个,然后考虑剩下的数取或者不取
故最终结果为
代码如下:
#include <cstdio> #include <algorithm> #include <iostream> #include <cstring> #include <vector> using namespace std; typedef long long LL; const LL MOD=1e9+7; const int MAXN=5010; LL stl2[MAXN][MAXN]; LL n,k; void stl2_init() { for(int i=1;i<=5000;i++) stl2[i][i]=1; for(int i=1;i<=5000;i++) for(int j=1;j<i;j++) stl2[i][j]=(stl2[i-1][j-1]+j*stl2[i-1][j]%MOD)%MOD; } LL quick_pow(LL a,LL b) { LL ans=1; a%=MOD; while(b>0) { if(b&1) ans=(ans*a)%MOD; b>>=1; a=(a*a)%MOD; } return ans; } LL A(LL n,LL m) { LL ans=1; for(int i=n;i>n-m;i--) ans=(ans*i)%MOD; return ans; } int main() { ios::sync_with_stdio(false); stl2_init(); cin>>n>>k; LL ans=0; for(int j=1;j<=k;j++) { LL tmp=stl2[k][j]*A(n,j)%MOD*quick_pow(2,n-j)%MOD; ans+=tmp; ans%=MOD; } cout<<ans<<endl; return 0; }
ans=∑i=1n(ni)
ans=∑i=1n(ni)ik