史丰收速算法的革命性贡献是:从高位算起,预测进位。不需要九九表,彻底颠覆了传统手算!
速算的核心基础是:1位数乘以多位数的乘法。
其中,乘以7是最复杂的,就以它为例。
因为,1/7 是个循环小数:0.142857...,如果多位数超过 142857...,就要进1
同理,2/7, 3/7, ... 6/7 也都是类似的循环小数,多位数超过 n/7,就要进n
下面的程序模拟了史丰收速算法中乘以7的运算过程。
乘以 7 的个位规律是:偶数乘以2,奇数乘以2再加5,都只取个位。
乘以 7 的进位规律是:
满 142857... 进1,
满 285714... 进2,
满 428571... 进3,
满 571428... 进4,
满 714285... 进5,
满 857142... 进6
请分析程序流程,填写划线部分缺少的代码。
//计算个位
int ge_wei(int a)
{
if(a % 2 == 0)
return (a * 2) % 10;
else
return (a * 2 + 5) % 10;
}
//计算进位
int jin_wei(char* p)
{
char* level[] = {
"142857",
"285714",
"428571",
"571428",
"714285",
"857142"
};
char buf[7];
buf[6] = ' ';
strncpy(buf,p,6);
int i;
for(i=5; i>=0; i--){
int r = strcmp(level[i], buf);
if(r<0) return i+1;
while(r==0){
p += 6;
strncpy(buf,p,6);
r = strcmp(level[i], buf);
if(r<0) return i+1;
______________________________; //填空
}
}
return 0;
}
//多位数乘以7
void f(char* s)
{
int head = jin_wei(s);
if(head > 0) printf("%d", head);
char* p = s;
while(*p){
int a = (*p-'0');
int x = (ge_wei(a) + jin_wei(p+1)) % 10;
printf("%d",x);
p++;
}
printf("
");
}
int main()
{
f("428571428571");
f("34553834937543");
return 0;
}
#include<stdio.h> #include<string.h> using namespace std; int ge_wei(int a) { if(a % 2 == 0) return (a * 2) % 10; else return (a * 2 + 5) % 10; } //计算进位 int jin_wei(char* p) { char* level[] = { "142857", "285714", "428571", "571428", "714285", "857142" }; char buf[7]; buf[6] = ' '; strncpy(buf,p,6); int i; for(i=5; i>=0; i--){ int r = strcmp(level[i], buf); if(r<0) return i+1; while(r==0){ p += 6; strncpy(buf,p,6); r = strcmp(level[i], buf); if(r<0) return i+1; if(r>0)return i; //______________________________; } } return 0; } //多位数乘以7 void f(char* s) { int head = jin_wei(s); if(head > 0) printf("%d", head); char* p = s; while(*p){ int a = (*p-'0'); int x = (ge_wei(a) + jin_wei(p+1)) % 10; printf("%d",x); p++; } printf(" "); } int main() { f("428571428571"); f("34553834937543"); return 0; }