zoukankan      html  css  js  c++  java
  • (搜索)cf 486D

    D. Valid Sets
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    As you know, an undirected connected graph with n nodes and n - 1 edges is called a tree. You are given an integer d and a tree consisting of n nodes. Each node i has a value ai associated with it.

    We call a set S of tree nodes valid if following conditions are satisfied:

    1. S is non-empty.
    2. S is connected. In other words, if nodes u and v are in S, then all nodes lying on the simple path between u and v should also be presented in S.
    3. .

    Your task is to count the number of valid sets. Since the result can be very large, you must print its remainder modulo 1000000007 (109 + 7).

    Input

    The first line contains two space-separated integers d (0 ≤ d ≤ 2000) and n (1 ≤ n ≤ 2000).

    The second line contains n space-separated positive integers a1, a2, ..., an(1 ≤ ai ≤ 2000).

    Then the next n - 1 line each contain pair of integers u and v (1 ≤ u, v ≤ n) denoting that there is an edge between u and v. It is guaranteed that these edges form a tree.

    Output

    Print the number of valid sets modulo 1000000007.

    Sample test(s)
    input
    1 4
    2 1 3 2
    1 2
    1 3
    3 4
    output
    8
    input
    0 3
    1 2 3
    1 2
    2 3
    output
    3
    input
    4 8
    7 8 7 5 4 6 4 10
    1 6
    1 2
    5 8
    1 3
    3 5
    6 7
    3 4
    output
    41
    Note

    In the first sample, there are exactly 8 valid sets: {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {3, 4} and {1, 3, 4}. Set {1, 2, 3, 4} is not valid, because the third condition isn't satisfied. Set {1, 4} satisfies the third condition, but conflicts with the second condition.

    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <algorithm>
    
    using namespace std;
    
    typedef long long ll;
    const ll mod = 1e9 + 7;
    const int maxn = 2005;
    
    int N, D, W[maxn];
    vector<int> G[maxn];
    
    ll dfs(int u, int f, int rt) {
        int n = G[u].size();
        ll ret = 1;
    
        for (int i = 0; i < n; i++) {
            int v = G[u][i];
    
            if (v == f || W[rt] < W[v] || (W[rt] == W[v] && v > rt) || W[rt] - W[v] > D)
                continue;
            ret = ret * (dfs(v, u, rt) + 1) % mod;
        }
        return ret;
    }
    
    int main () {
        scanf("%d%d", &D, &N);
        for (int i = 1; i <= N; i++)
            scanf("%d", &W[i]);
        int u, v;
        for (int i = 1; i < N; i++) {
            scanf("%d%d", &u, &v);
            G[u].push_back(v);
            G[v].push_back(u);
        }
    
        ll ans = 0;
        for (int i = 1; i <= N; i++)
            ans = (ans + dfs(i, -1, i)) % mod;
        printf("%lld
    ", ans);
        return 0;
    }
    

      

  • 相关阅读:
    H5测试
    【多线程】不懂什么是 Java 中的锁?看看这篇你就明白了!
    【spring】69道Spring面试题和答案
    【数据库】数据库面试知识点汇总
    【小技巧】老程序员总结的 40 个小技巧,长脸了~
    【springboot】集成swagger
    【springboot】集成Druid 作为数据库连接池
    【springboot】整合 MyBatis
    【权限管理】Spring Security 执行流程
    【权限管理】springboot集成security
  • 原文地址:https://www.cnblogs.com/a972290869/p/4243179.html
Copyright © 2011-2022 走看看