Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
(1<n<=1000, 0<m<100000, s != t)
Output
输出 一行有两个数, 最短距离及其花费。
Sample Input
3 2
1 2 5 6
2 3 4 5
1 3
0 0
Sample Output
9 11
这么水的题目WA到死,,,弱成翔啊啊啊啊,,贴大神代码
#include<iostream>
#include<cstring>
using namespace std;
const int Maxn = 1000000;
const int maxn = 10002;
int dis[maxn][maxn], pis[maxn][maxn], d[maxn], p[maxn];
bool vis[maxn];
int n, m;
void Distriaj(int s, int t)
{
for(int i = 1; i <= n; i++)
{
vis[i] = false;
d[i] = dis[s][i];
p[i] = pis[s][i];
}
vis[s] = true;
for(int time = 1; time < n; time++)
{
int Min = Maxn, k = -1;
for(int i = 1; i <= n; i++)
if(!vis[i] && d[i]<Min) Min = d[i], k = i;
vis[k] = true;
for(int i = 1; i <= n; i++)
{
if(!vis[i] && d[i] > d[k]+dis[k][i])
{
d[i] = d[k]+dis[k][i];
p[i] = p[k]+pis[k][i];
}
if(!vis[i] && d[i]==d[k]+dis[k][i] && p[i] > p[k]+pis[k][i])
p[i] = p[k]+pis[k][i];
}
}
cout << d[t] << " " << p[t] << endl;
}
int main()
{
int s,t;
while(cin >> n >> m )
{
if(n==0&&m==0)
break;
for(int i = 1; i <= n; i++)
{
d[i] = maxn;
p[i] = maxn;
for(int j = 1; j <= n; j++)
{
if(i != j)
{
dis[i][j] = dis[j][i] = Maxn;
pis[i][j] = pis[j][i] = Maxn;
}
else
{
dis[i][j] = 0;
pis[i][j] = 0;
}
}
}
int a, b, c, d;
for(int i = 1; i <= m; i++)
{
cin >> a >> b >> c >> d;
if(dis[a][b] > c)
{
dis[a][b] = dis[b][a] = c;
pis[a][b] = pis[b][a] = d;
}
if(dis[a][b] == c && pis[a][b] > d)
pis[a][b] = pis[b][a] = d;
}
cin >> s>>t;
Distriaj(s,t);
}
return 0;
}