String s of length n is called k-palindrome, if it is a palindrome itself, and its prefix and suffix of length are (k - 1)-palindromes. By definition, any string (even empty) is 0-palindrome.
Let's call the palindrome degree of string s such a maximum number k, for which s is k-palindrome. For example, "abaaba" has degree equals to 3.
You are given a string. Your task is to find the sum of the palindrome degrees of all its prefixes.
The first line of the input data contains a non-empty string, consisting of Latin letters and digits. The length of the string does not exceed 5·106. The string is case-sensitive.
Output the only number — the sum of the polindrome degrees of all the string's prefixes.
a2A
1
abacaba
6
#include<cstdio> #include<iostream> #include<cstdlib> #include<cstring> #include<climits> #include<cmath> #include<algorithm> #include<queue> #include<vector> #include<stack> #include<set> #include<map> #define INF 0x3f3f3f3f using namespace std; const int MAXN=5100000; char s[MAXN<<1]; int p[MAXN<<1]; int rank[MAXN]; int main() { while(~scanf("%s",s)) { int n=strlen(s); s[2*n+2]=' '; for(int i=n-1; i>=0; i--) { s[2*i+2]=s[i]; s[2*i+3]='*'; } s[0]='$'; s[1]='*'; memset(p,0,sizeof(p)); int maxn=0,maxi=0; long long ans=0LL; for(int i=1; i<2*n+2; i++) { p[i]=maxn>i?min(p[2*maxi-i],maxn-i):1; while(s[i+p[i]]==s[i-p[i]])p[i]++; if(maxn<i+p[i]) { maxn=i+p[i]; maxi=i; } } memset(rank,0,sizeof(rank)); for(int i=0; i<n; i++) { if(p[i+2]!=i+2) { rank[i]=0; } else { if(i) { rank[i]=rank[(i-1)/2]+1; } rank[i]=max(rank[i],1); } ans+=rank[i]; } printf("%I64d ",ans); } return 0; }
不好想( ╯□╰ ),用macacher 算法,判断p[i]是否为i,若想等说明是回文,i为中心,更新 rank[i]=rank[(i-1)/2]+1;