一般都是用机器学习、梯度下降或sklearn、pytorch来做函数拟合运算,今天介绍遗传编程,或称基因编程/GP,来做这个计算
最终就是构造一棵树AST,来表示运算的先后、权重:
具体原理可以参考这篇文章:https://blog.csdn.net/ocd_with_naming/article/details/98901749
我们的目标是拟合这个函数:
np.sin(x) + np.log(x)
图像为:
先来一段java代码,是加载训练数据的,x、y的一个list;
private static List<Sample<Double>> load训练数据() { List<Sample<Double>> samples=new ArrayList<>(); samples.add(new DoubleDataSample(new Double[]{ 1.0 , 0.8414709848078965 })); //第一个为x,第二个为y samples.add(new DoubleDataSample(new Double[]{ 1.1 , 0.9865175398657604 })); samples.add(new DoubleDataSample(new Double[]{ 1.2000000000000002 , 1.1143606427611812 })); samples.add(new DoubleDataSample(new Double[]{ 1.3000000000000003 , 1.2259224498846844 })); samples.add(new DoubleDataSample(new Double[]{ 1.4000000000000004 , 1.3219219666096733 })); samples.add(new DoubleDataSample(new Double[]{ 1.5000000000000004 , 1.4029600947122192 })); samples.add(new DoubleDataSample(new Double[]{ 1.6000000000000005 , 1.4695772322872411 })); samples.add(new DoubleDataSample(new Double[]{ 1.7000000000000006 , 1.5222930615146393 })); samples.add(new DoubleDataSample(new Double[]{ 1.8000000000000007 , 1.5616342957803144 })); samples.add(new DoubleDataSample(new Double[]{ 1.9000000000000008 , 1.5881539738598094 }));
//省略很多x/y对 return samples; }
下面就是整个算法的架子了:
public static void main(String[] args) { List<Op<Double>> terminals=new ArrayList<>(); terminals.add(Var.of("x", 0)); //由于只有1个自变量,所以这里只有x
//0代表第一个自变量
//如果是向量,则此处可以为x1/0, x2/1, x3/2 以此类推
List<Sample<Double>> samples=load训练数据(); final ISeq<Op<Double>> OPS = ISeq.of(MathOp.ADD, MathOp.SUB, MathOp.MUL, MathOp.SIN,MathOp.COS, MathOp.LOG); //这些是算法允许使用的操作算子 final ISeq<Op<Double>> TMS = ISeq.of(terminals); //上面的自变量在此处挂接上 final Regression<Double> REGRESSION = Regression.of( Regression.codecOf( OPS, TMS, 5, t -> t.getGene().size() < 30 ), Error.of(LossFunction::mse), //MSE计算误差 samples ); final Engine<ProgramGene<Double>, Double> engine = Engine .builder(REGRESSION) .minimizing() .alterers( new SingleNodeCrossover<>(0.1), new Mutator<>()) .build(); final EvolutionResult<ProgramGene<Double>, Double> er = engine.stream() .limit(Limits.byExecutionTime(Duration.ofSeconds(5))) .collect(EvolutionResult.toBestEvolutionResult()); final ProgramGene<Double> program = er.getBestPhenotype() .getGenotype() .getGene(); final TreeNode<Op<Double>> tree = program.toTreeNode(); MathExpr.rewrite(tree); System.out.println("G: " + er.getTotalGenerations()); System.out.println("F: " + new MathExpr(tree)); System.out.println("E: " + REGRESSION.error(tree)); }