zoukankan      html  css  js  c++  java
  • 用keras做SQL注入攻击的判断

    本文是通过深度学习框架keras来做SQL注入特征识别, 不过虽然用了keras,但是大部分还是普通的神经网络,只是外加了一些规则化、dropout层(随着深度学习出现的层)。

    基本思路就是喂入一堆数据(INT型)、通过神经网络计算(正向、反向)、SOFTMAX多分类概率计算得出各个类的概率,注意:这里只要2个类别:0-正常的文本;1-包含SQL注入的文本

    文件分割上,做成了4个python文件:

    1. util类,用来将char转换成int(NN要的都是数字类型的,其他任何类型都要转换成int/float这些才能喂入,又称为feed) 
    2. data类,用来获取训练数据,验证数据的类,由于这里的训练是有监督训练,因此此时需要返回的是个元组(x, y)
    3. trainer类,keras的网络模型建模在这里,包括损失函数、训练epoch次数等
    4. predict类,获取几个测试数据,看看效果的预测类

    先放trainer类代码,网络定义在这里,最重要的一个,和数据格式一样重要(呵呵,数据格式可是非常重要的,在这种程序中)

    import SQL注入Data
    import numpy as np
    import keras
    from keras.models import Sequential
    from keras.layers import Dense, Dropout, Activation
    from keras.layers.normalization import BatchNormalization
    from keras.optimizers import SGD
    
    x, y=SQL注入Data.loadSQLInjectData()
    availableVectorSize=15
    x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=availableVectorSize)
    y=keras.utils.to_categorical(y, num_classes=2)
    
    
    model = Sequential()
    model.add(Dense(64, activation='relu', input_dim=availableVectorSize))
    model.add(BatchNormalization())
    model.add(Dropout(0.3))
    model.add(Dense(64, activation='relu'))
    model.add(Dropout(0.3))
    model.add(Dense(2, activation='softmax'))
    
    sgd = SGD(lr=0.001, momentum=0.9)
    model.compile(loss='mse',
                  optimizer=sgd,
                  metrics=['accuracy'])
    
    history=model.fit(x, y,epochs=500,batch_size=16)
    
    model.save('E:\sql_checker\models\trained_models.h5')
    print("DONE, model saved in path-->E:\sql_checker\models\trained_models.h5")
    
    import matplotlib.pyplot as plt
    plt.plot(history.history['loss'])
    plt.title('model loss')
    plt.ylabel('loss')
    plt.xlabel('epoch')
    plt.legend(['train', 'test'], loc='upper left')
    plt.show()
    

    先来解释上面这段plt的代码,因为最容易解释,这段代码是用来把每次epoch的训练的损失loss value用折线图表示出来:

      

    何为训练?何为损失loss value?

    训练的目的是为了想让网络最终计算出来的分类数据和我们给出的y一致,那不一致怎么算?不一致就是有损失,也就是说训练的目的是要一致,也就是要损失最小化

    怎么让损失最小化?梯度下降,这里用的是SGD优化算法:

    from keras.optimizers import SGD
    
    sgd = SGD(lr=0.001, momentum=0.9)
    model.compile(loss='mse',
                  optimizer=sgd,
                  metrics=['accuracy'])
    

    上面这段代码的loss='mse'就是定义了用那种损失函数,还有好几种损失函数,大家自己参考啊。

    optimizer=sgd就是优化算法用哪个了,不同的optimizer有不同的参数

    由于此处用的是全连接NN,因此是需要固定的输入size的,这个函数就是用来固定(不够会补0) 特征向量size的:

    x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=availableVectorSize)
    

    再来看看最终的分类输出,是one hot的,这个one hot大家自己查查,很容易的定义,就是比较浪费空间,分类间没有关联性,不过用在这里很方便

    y=keras.utils.to_categorical(y, num_classes=2)
    

    然后再说说预测部分代码:

    import SQL注入Data
    import Converter
    
    
    import numpy as np
    import keras
    from keras.models import load_model
    
    print("predict....")
    
    x=SQL注入Data.loadTestSQLInjectData()
    x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=15)
    
    model=load_model('E:\sql_checker\models\trained_models.h5')
    result=model.predict_classes(x, batch_size=len(x))
    result=Converter.convert2label(result)
    print(result)
    
    
    print("DONE")
    

    这部分代码很容易理解,并且连y都没有  

      

     好了,似乎有那么点意思了吧。

    下面把另外几个工具类、数据类代码放出来:

    def toints(sentence):
        base=ord('0')
        ary=[]
        for c in sentence:
            ary.append(ord(c)-base)
        return ary
    
    
    def convert2label(vector):
        string_array=[]
        for v in vector:
            if v==1:
                string_array.append('SQL注入')
            else:
                string_array.append('正常文本')
        return string_array
    
    import Converter
    import numpy as np
    
    def loadSQLInjectData():
        x=[]
        x.append(Converter.toints("100"))
        x.append(Converter.toints("150"))
        x.append(Converter.toints("1"))
        x.append(Converter.toints("3"))
        x.append(Converter.toints("19"))
        x.append(Converter.toints("37"))
        x.append(Converter.toints("1'--"))
        x.append(Converter.toints("1' or 1=1;--"))
        x.append(Converter.toints("updatable"))
        x.append(Converter.toints("update tbl"))
        x.append(Converter.toints("update someb"))
        x.append(Converter.toints("update"))
        x.append(Converter.toints("updat"))
        x.append(Converter.toints("update a"))
        x.append(Converter.toints("'--"))
        x.append(Converter.toints("' or 1=1;--"))
        x.append(Converter.toints("aupdatable"))
        x.append(Converter.toints("hello world"))
    
        y=[[0],[0],[0],[0],[0],[0],[1],[1],[0],[1],[1],[0],[0],[1],[1],[1],[0],[0]]
    
        x=np.asarray(x)
        y=np.asarray(y)
    
        return x, y
    
    
    def loadTestSQLInjectData():    
        x=[]
        x.append(Converter.toints("some value"))
        x.append(Converter.toints("-1"))
        x.append(Converter.toints("' or 1=1;--"))
        x.append(Converter.toints("noupdate"))
        x.append(Converter.toints("update "))
        x.append(Converter.toints("update"))
        x.append(Converter.toints("update z"))
        x=np.asarray(x)
        return x
    

    最后,祝大家元旦快乐。

      

  • 相关阅读:
    德国10马克,高斯正态分布函数
    安装python的第三方库 geopandas
    Python版本的GDAL 安装
    [原创]App崩溃率统计工具推荐
    用户增长模型AARRR模型
    [原创]nginx日志分析工具
    [原创]浅谈移动互联网创业公司工具类产品
    [原创]浅谈在创业公司对PMF的理解
    [原创]浅谈创业公司如何选择产品方向
    [原创]浅谈在创业公司对MVP的理解
  • 原文地址:https://www.cnblogs.com/aarond/p/sql_inject.html
Copyright © 2011-2022 走看看