zoukankan      html  css  js  c++  java
  • 561. Array Partition I【easy】

    561. Array Partition I【easy】

    Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), ..., (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible.

    Example 1:

    Input: [1,4,3,2]
    
    Output: 4
    Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4).
    

    Note:

    1. n is a positive integer, which is in the range of [1, 10000].
    2. All the integers in the array will be in the range of [-10000, 10000].

    解法一:

     1 class Solution {
     2 public:
     3     int arrayPairSum(vector<int>& nums) {
     4         if (nums.empty()) {
     5             return 0;
     6         }
     7         
     8         sort(nums.begin(), nums.end());
     9         
    10         int sum = 0;
    11         for (int i = 0; i < nums.size(); i += 2) {
    12             sum += nums[i];
    13         }
    14         
    15         return sum;
    16     }
    17 };

    为了不浪费元素,先排序,这样可以保证min加出来为max

    比如[1, 9, 2, 4, 6, 8]

    如果按顺序来的话,1和9就取1,2和4就取2,6和8就取6,显而易见并不是最大,原因就是9在和1比较的时候被浪费了,9一旦浪费就把8也给影响了,所以要先排序

    @shawngao 引入了数学证明的方法,如下:

    Let me try to prove the algorithm...

    1. Assume in each pair ibi >= ai.
    2. Denote Sm = min(a1, b1) + min(a2, b2) + ... + min(an, bn). The biggest Sm is the answer of this problem. Given 1Sm = a1 + a2 + ... + an.
    3. Denote Sa = a1 + b1 + a2 + b2 + ... + an + bnSa is constant for a given input.
    4. Denote di = |ai - bi|. Given 1di = bi - ai. Denote Sd = d1 + d2 + ... + dn.
    5. So Sa = a1 + a1 + d1 + a2 + a2 + d2 + ... + an + an + di = 2Sm + Sd => Sm = (Sa - Sd) / 2. To get the max Sm, given Sa is constant, we need to make Sd as small as possible.
    6. So this problem becomes finding pairs in an array that makes sum of di (distance between ai and bi) as small as possible. Apparently, sum of these distances of adjacent elements is the smallest. If that's not intuitive enough, see attached picture. Case 1 has the smallest Sd.

  • 相关阅读:
    leetcode(js)算法605之种花问题
    如何使绝对定位内部元素不继承父级宽度,而是靠内容自动撑开宽度(转载)
    SQL连接查询、变量、运算符、分支、循环语句
    SQL主外键和子查询
    数据库函数
    数据库的备份恢复和部分操作语句
    SQL部分 数据库的建立 增删改查
    【转】毛玻璃特效
    Font Awesome符号字体
    form表单验证和事件
  • 原文地址:https://www.cnblogs.com/abc-begin/p/7623481.html
Copyright © 2011-2022 走看看