zoukankan      html  css  js  c++  java
  • TensorFlow的简单实用

    定义常量

    import tensorflow as tf
    # 定义常量
    m1 = tf.constant([[3, 3]])
    m2 = tf.constant([[2], [3]])
    # 定义乘法
    product = tf.matmul(m1, m2)
    # 这里不会直接输出结果,会打印出一个tensor
    # 想要输出结果要在sess中进行
    print(product)
    # 第一种方式定义session
    sess =  tf.Session() 
    result = sess.run(product)
    print(result)
    sess.close()
    # 第二种方式定义session
    with tf.Session() as sess:
        print(sess.run(product))
        sess.close()

    结果:[[15]]

    定义变量

    import tensorflow as tf
    # 定义变量
    x = tf.Variable([1, 2])
    y = tf.Variable([3, 3])
    sub = tf.subtract(x, y)
    add = tf.add(x, y)
    
    # 初始化所有变量 对于变量要进行初始化
    init = tf.global_variables_initializer()
    # 在回话中进行结果
    with tf.Session() as sess:
        sess.run(init)
        print(sess.run(sub))
        print(sess.run(add))

    结构:

    [-2 -1]
    [4 5]

    占位符

    import tensorflow as tf
    #
    Feed:先定义占位符,等需要的时候再传入数据 x1 = tf.placeholder(tf.float32) x2 = tf.placeholder(tf.float32) # 乘法操作 y = tf.multiply(x1, x2) # 使用的占位符元素在计算时要进行赋值运算 with tf.Session() as sess: print(sess.run(y, feed_dict={x1: 3, x2: 4}))

     使用tensor进行线性回归

    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    # 随机初始化一批数据
    x_data = np.random.rand(100)
    noise = np.random.normal(0, 0.01, x_data.shape)
    y_data = x_data * 0.1 + 0.2 + noise
    
    # 构建一个线性模型
    d = tf.Variable(np.random.rand(1))
    k = tf.Variable(np.random.rand(1))
    y_pre = k*x_data + d
    
    # 定义loss值
    loss = tf.losses.mean_squared_error(y_data, y_pre)
    # 定义优化器  使用优化器来优化loss
    optimezer = tf.train.GradientDescentOptimizer(0.3)
    train = optimezer.minimize(loss)
    
    # 初始化变量
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        for i in range(301):
            sess.run(train)
            if i % 30 == 0:
                print(i, sess.run([k, d]))
        y_pred = sess.run(y_pre)
        # 画出y_data和y_pred
        plt.scatter(x_data, y_data)
        plt.scatter(x_data, y_pred)
        plt.show()

    结果:

             

    非线性回归

    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    # 随机一批数据
    x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis]
    noise = np.random.normal(0, 0.01, x_data.shape)
    y_data = np.square(x_data) + noise
    
    # 构建非线性模型
    # 定义两个占位符,用来添加x_data和y_data
    x = tf.placeholder(tf.float32, [None, 1])
    y = tf.placeholder(tf.float32, [None, 1])
    
    # 定义网络结构:定义只有一个隐藏层的权值矩阵
    w1 = tf.Variable(tf.random_normal([1, 20]))
    b1 = tf.Variable(tf.zeros([20]))
    hider = tf.nn.tanh(tf.matmul(x, w1) + b1)
    w2 = tf.Variable(tf.random_normal([20, 1]))
    b2 = tf.Variable(tf.zeros([1]))
    out = tf.nn.tanh(tf.matmul(hider, w2)+b2)
    
    # 计算loss和定义优化器
    loss = tf.losses.mean_squared_error(y, out)
    optimizer = tf.train.GradientDescentOptimizer(0.1)
    train = optimizer.minimize(loss)
    
    with tf.Session() as sess:
        init = tf.global_variables_initializer()
        sess.run(init)
        for i in range(8001):
            sess.run(train, feed_dict={x: x_data, y: y_data})
         
        #  预测数据以及画出预测结构
        y_pred = sess.run(out, feed_dict={x: x_data, y: y_data})
        plt.scatter(x_data, y_data)
        plt.scatter(x_data, y_pred)
        plt.show()

    结果:

    使用BP神经网络训练mnist数据集

    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_dataut_data
    
    # 载入mnist数据集
    mnist = input_data.read_data_sets("mnist_data", one_hot=True)
    
    # 设置banch值
    batch_size = 128
    # 计算执行轮数
    n_batch = mnist.train.num_examples // batch_size
    
    # 定义两个placeholder来存放数据
    x = tf.placeholder(tf.float32, [None, 784])
    y = tf.placeholder(tf.float32, [None, 10])
    
    # 创建神经网络 784→10
    W = tf.Variable(tf.random_normal([784, 10]))
    b = tf.Variable(tf.zeros(10))
    prediction = tf.nn.softmax(tf.matmul(x, W) + b)
    
    # 定义损失函数和优化器
    loss = tf.losses.mean_squared_error(y, prediction)
    train = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    # 计算准确率
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1))
    accaracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epch in range(51):
            for batch in range(n_batch):
                # 获取一个batch的数据
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)
                sess.run(train, feed_dict={x: batch_xs, y: batch_ys})
            print("Iter: ", sess.run(accaracy, feed_dict={x: mnist.test.images, y: mnist.test.labels}))

    结果:由于只有一层神经元,最终acc稳定在0.67附近

    提升acc的方法:

    1:建议把损失函数换成交叉熵;

    2:建议加深网络,2-3层即可;

    3:尝试改变优化器

  • 相关阅读:
    UI自动化测试(五)TestNG简介与安装步骤
    selenium webdriver 右键另存为下载文件(结合robot and autoIt)
    SpringBoot系列之日志框架介绍及其原理简介
    SpringBoot系列之profles配置多环境(篇二)
    SpringBoot系列之Spring容器添加组件方式
    MySQL基础之自连接用法简介
    MySQL基础之Natural Join用法
    MySQL基础之STRAIGHT JOIN用法简介
    SpringBoot系列之配置文件加载位置
    SpringBoot系列之外部配置用法简介
  • 原文地址:https://www.cnblogs.com/abc23/p/12283819.html
Copyright © 2011-2022 走看看