zoukankan      html  css  js  c++  java
  • 【BZOJ 1492】【NOI 2007】货币兑换Cash

    这是道CDQ分治的例题:

    $O(n^2)$的DP:

    f [1]←S* Rate[1] / (A[1] * Rate[1] + B[1])
    Ans←S
    For i ← 2 to n
      For j ←1 to i-1
        x ← f [j] * A[i] + f [j] / Rate[j] * B[i]
        If x> Ans
          Then Ans ← x
      End For
      f [i] ← Ans* Rate[i] / (A[i] * Rate[i] + B[i])
    End For
    Print(Ans)

    决策i是通过1~i-1之间的决策转移过来的,对于j,k∈[1,i-1]且决策k比决策j优当且仅当:

    $$(f[j]-f[k])×A[i]+frac{f[j]}{Rate[j]-frac{f[k]}{Rate[k]}}×B[i]<0$$

    不妨设$f[j]<f[k]$,$g[j]=frac{f[j]}{Rate[j]}$,那么

    $$frac{g[j]-g[k]}{f[j]-f[k]}>-frac{a[i]}{b[i]}$$

    斜率优化DP能用单调队列维护是因为右边的斜率是单调的,但这里$-frac{a[i]}{b[i]}$显然是不单调的,这时就需要在单调队列上二分。但因为每次插入的点的横坐标也不是单调的,我们就得建立一棵splay在线地向其中加点或询问

    以f值为关键字建立splay,维护一个横坐标为f值,纵坐标为g值得上凸壳,时间复杂度为$O(nlog n)$

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const double inf = 1e9;
    const double eps = 1e-9;
    const int N = 100003;
     
    int n;
    double f[N], A[N], B[N], Rate[N];
    struct node *null;
    struct node {
        node *ch[2], *fa;
        double lk, rk, x, y;
        int id;
        node(int num) {ch[0] = ch[1] = fa = null; lk = rk = x = y = 0; id = num;}
        bool pl() {return fa->ch[1] == this;}
        void setc(node *r, bool c) {this->ch[c] = r; if (r != null) r->fa = this;}
    } *root;
     
    namespace Splay {
        void rotate(node *r) {
            node *f = r->fa;
            bool c = r->pl();
            if (f == root) root = r, r->fa = null;
            else f->fa->setc(r, f->pl());
            f->setc(r->ch[!c], c);
            r->setc(f, !c);
        }
        void splay(node *r, node *tar = null) {
            for(; r->fa != tar; rotate(r))
                if (r->fa->fa != tar) rotate(r->pl() == r->fa->pl() ? r->fa : r);
        }
        node *find(double x) {
            if (root == null) return null;
            node *r = root;
            while (r != null) {
                if (r->lk < x) r = r->ch[0];
                else if (r->rk > x) r = r->ch[1];
                else if (r->lk >= x && r->rk <= x) return r;
            }
            return r;
        }
        double get(node *a, node *b) {
            if (fabs(a->x - b->x) < eps) return -inf;
            else return (b->y - a->y) / (b->x - a->x);
        }
        node *getl(node *r) {
            node *t = r->ch[0], *ans = t;
            while (t != null) {
                if (t->lk >= get(t, r)) ans = t, t = t->ch[1];
                else t = t->ch[0];
            }
            return ans;
        }
        node *getr(node *r) {
            node *t = r->ch[1], *ans = t;
            while (t != null) {
                if (get(r, t) >= t->rk) ans = t, t = t->ch[0];
                else t = t->ch[1];
            }
            return ans;
        }
        void insert(node *t) {
            if (root == null) {
                root = t;
                root->lk = inf;
                root->rk = -inf;
                return;
            }
            node *r = root;
            while (r != null) {
                if (t->x < r->x) {
                    if (r->ch[0] == null) {r->setc(t, 0); break;}
                    else r = r->ch[0];
                } else {
                    if (r->ch[1] == null) {r->setc(t, 1); break;}
                    else r = r->ch[1];
                }
            }
            splay(t);
            if (t->ch[0] != null) {
                node *tl = getl(t);
                splay(tl, root);
                tl->ch[1] = null;
                tl->rk = t->lk = get(tl, t);
            } else
                t->lk = inf;
            if (t->ch[1] != null) {
                node *tr = getr(t);
                splay(tr, root);
                tr->ch[0] = null;
                tr->lk = t->rk = get(t, tr);
            } else
                t->rk = -inf;
            if (t->lk < t->rk) {
                node *cl = t->ch[0], *cr = t->ch[1];
                if (cl == null && cr == null) //其实删点根本不用这么麻烦,不用判断左边是否为空,若左边为空那么t->lk<t->rk的判断就过不了,这是fqk打野提醒我的QAQ
                    root = null;
                else if (cl == null) {
                    root = cr;
                    cr->fa = null;
                    cr->lk = inf;
                } else if (cr == null) {
                    root = cl;
                    cl->fa = null;
                    cl->rk = -inf;
                } else {
                    root = cl;
                    cl->fa = null;
                    cl->setc(cr, 1);
                    cl->rk = cr->lk = get(cl, cr);
                }
            }
        }
    }
     
    int main() {
        scanf("%d%lf", &n, &f[0]);
        for(int i = 1; i <= n; ++i) scanf("%lf%lf%lf", &A[i], &B[i], &Rate[i]);
        null = new node(0); *null = node(0); root = null;
        for(int i = 1; i <= n; ++i) {
            node *j = Splay::find(-A[i] / B[i]);
            f[i] = max(f[i - 1], j->x * A[i] + j->y * B[i]);
            node *r = new node(i);
            r->y = f[i] / (A[i] * Rate[i] + B[i]);
            r->x = r->y * Rate[i];
            Splay::insert(r);
        }
        printf("%.3lf
    ", f[n]);
        return 0;
    }
    

    splay好写好调!但是还是得学CDQ分治啊!!!

    CDQ分治利用预处理排序,使原先的序列的询问的斜率有序,然后处理左半边,用左半边更新右半边,再处理右半边,这样因为询问的斜率有序,就可以用单调队列或单调栈来维护了,复杂度也是$O(nlog n)$,论文里讲得很清楚啊。

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int N = 100003;
    const double inf = 1e9;
    const double eps = 1e-9;
    struct node {
    	double q, a, b, rate, k; int id;
    } q[N], qq[N];
    struct Point {
    	double x, y;
    	bool operator < (const Point &a) const {
    		return (x  < a.x) || (fabs(x - a.x) < eps && y < a.y);
    	}
    } p[N], pp[N];
    
    double get(int x, int y) {
    	if (fabs(p[x].x - p[y].x) < eps) return -inf;
    	return (p[x].y - p[y].y) / (p[x].x - p[y].x);
    }
    
    int st[N], n;
    double f[N];
    void solve(int l, int r) {
    	if (l == r) {
    		f[l] = max(f[l - 1], f[l]);
    		p[l].y = f[l] / (q[l].a * q[l].rate + q[l].b);
    		p[l].x = p[l].y * q[l].rate;
    		return;
    	}
    	int mid = (l + r) >> 1, h = l, t = mid + 1;
    	for(int i = l; i <= r; ++i)
    		if (q[i].id <= mid) qq[h++] = q[i];
    		else qq[t++] = q[i];
    	for(int i = l; i <= r; ++i) q[i] = qq[i];
    	solve(l, mid);
    	int top = 0;
    	for(int i = l; i <= mid; ++i) {
    		while (top >= 2 && get(i, st[top]) > get(st[top], st[top - 1])) --top;
    		st[++top] = i;
    	}
    	t = 1;
    	for(int i = r; i > mid; --i) {
    		while (t < top && q[i].k < get(st[t], st[t + 1])) ++t;
    		f[q[i].id] = max(f[q[i].id], p[st[t]].x * q[i].a + p[st[t]].y * q[i].b);
    	}
    	solve(mid + 1, r);
    	h = l; t = mid + 1;
    	for(int i = l; i <= r; ++i)
    		if ((p[h] < p[t] || t > r) && h <= mid) pp[i] = p[h++];
    		else pp[i] = p[t++];
    	for(int i = l; i <= r; ++i) p[i] = pp[i];
    }
    
    bool cmp(node A, node B) {return A.k < B.k;}
    int main() {
    	scanf("%d%lf", &n, &f[0]);
    	for(int i = 1; i <= n; ++i) {
    		scanf("%lf%lf%lf", &q[i].a, &q[i].b, &q[i].rate);
    		q[i].k = -q[i].a / q[i].b;
    		q[i].id = i;
    	}
    	sort(q + 1, q + n + 1, cmp);
    	solve(1, n);
    	printf("%.3lf
    ", f[n]);
    	return 0;
    }
    

    省队集训期间我充分展现出了自己的弱QAQ(为什么不说发现自己的弱呢,因为我很久以前就发现了TwT)继续努力~后天就要回新校颓文化课了,下一个月好好搞文化课,年级里的排名不能再退步了。希望期末考试能取得较大的进步,毕竟这是我第一次准备认认真真颓文化课QwQ←滚粗狗的无奈

    2016-07-11期末挂惨了TwT,比以前任何一次都惨_(:з」∠)_之前的flag too naive!

  • 相关阅读:
    数据类型之间的转换
    博客园页面美化全系列
    drf——django的缓存和信号
    PEP8规范
    drf——drf局部使用,全局使用顺序
    drf—— xadmin的使用
    drf—— Book系列连表接口
    drf—— base64加码与解码
    drf——小知识
    drf—— 响聊聊cookie session token的演变
  • 原文地址:https://www.cnblogs.com/abclzr/p/5538286.html
Copyright © 2011-2022 走看看