这是道CDQ分治的例题:
$O(n^2)$的DP:
f [1]←S* Rate[1] / (A[1] * Rate[1] + B[1])
Ans←S
For i ← 2 to n
For j ←1 to i-1
x ← f [j] * A[i] + f [j] / Rate[j] * B[i]
If x> Ans
Then Ans ← x
End For
f [i] ← Ans* Rate[i] / (A[i] * Rate[i] + B[i])
End For
Print(Ans)
决策i是通过1~i-1之间的决策转移过来的,对于j,k∈[1,i-1]且决策k比决策j优当且仅当:
$$(f[j]-f[k])×A[i]+frac{f[j]}{Rate[j]-frac{f[k]}{Rate[k]}}×B[i]<0$$
不妨设$f[j]<f[k]$,$g[j]=frac{f[j]}{Rate[j]}$,那么
$$frac{g[j]-g[k]}{f[j]-f[k]}>-frac{a[i]}{b[i]}$$
斜率优化DP能用单调队列维护是因为右边的斜率是单调的,但这里$-frac{a[i]}{b[i]}$显然是不单调的,这时就需要在单调队列上二分。但因为每次插入的点的横坐标也不是单调的,我们就得建立一棵splay在线地向其中加点或询问
以f值为关键字建立splay,维护一个横坐标为f值,纵坐标为g值得上凸壳,时间复杂度为$O(nlog n)$
#include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const double inf = 1e9; const double eps = 1e-9; const int N = 100003; int n; double f[N], A[N], B[N], Rate[N]; struct node *null; struct node { node *ch[2], *fa; double lk, rk, x, y; int id; node(int num) {ch[0] = ch[1] = fa = null; lk = rk = x = y = 0; id = num;} bool pl() {return fa->ch[1] == this;} void setc(node *r, bool c) {this->ch[c] = r; if (r != null) r->fa = this;} } *root; namespace Splay { void rotate(node *r) { node *f = r->fa; bool c = r->pl(); if (f == root) root = r, r->fa = null; else f->fa->setc(r, f->pl()); f->setc(r->ch[!c], c); r->setc(f, !c); } void splay(node *r, node *tar = null) { for(; r->fa != tar; rotate(r)) if (r->fa->fa != tar) rotate(r->pl() == r->fa->pl() ? r->fa : r); } node *find(double x) { if (root == null) return null; node *r = root; while (r != null) { if (r->lk < x) r = r->ch[0]; else if (r->rk > x) r = r->ch[1]; else if (r->lk >= x && r->rk <= x) return r; } return r; } double get(node *a, node *b) { if (fabs(a->x - b->x) < eps) return -inf; else return (b->y - a->y) / (b->x - a->x); } node *getl(node *r) { node *t = r->ch[0], *ans = t; while (t != null) { if (t->lk >= get(t, r)) ans = t, t = t->ch[1]; else t = t->ch[0]; } return ans; } node *getr(node *r) { node *t = r->ch[1], *ans = t; while (t != null) { if (get(r, t) >= t->rk) ans = t, t = t->ch[0]; else t = t->ch[1]; } return ans; } void insert(node *t) { if (root == null) { root = t; root->lk = inf; root->rk = -inf; return; } node *r = root; while (r != null) { if (t->x < r->x) { if (r->ch[0] == null) {r->setc(t, 0); break;} else r = r->ch[0]; } else { if (r->ch[1] == null) {r->setc(t, 1); break;} else r = r->ch[1]; } } splay(t); if (t->ch[0] != null) { node *tl = getl(t); splay(tl, root); tl->ch[1] = null; tl->rk = t->lk = get(tl, t); } else t->lk = inf; if (t->ch[1] != null) { node *tr = getr(t); splay(tr, root); tr->ch[0] = null; tr->lk = t->rk = get(t, tr); } else t->rk = -inf; if (t->lk < t->rk) { node *cl = t->ch[0], *cr = t->ch[1]; if (cl == null && cr == null) //其实删点根本不用这么麻烦,不用判断左边是否为空,若左边为空那么t->lk<t->rk的判断就过不了,这是fqk打野提醒我的QAQ root = null; else if (cl == null) { root = cr; cr->fa = null; cr->lk = inf; } else if (cr == null) { root = cl; cl->fa = null; cl->rk = -inf; } else { root = cl; cl->fa = null; cl->setc(cr, 1); cl->rk = cr->lk = get(cl, cr); } } } } int main() { scanf("%d%lf", &n, &f[0]); for(int i = 1; i <= n; ++i) scanf("%lf%lf%lf", &A[i], &B[i], &Rate[i]); null = new node(0); *null = node(0); root = null; for(int i = 1; i <= n; ++i) { node *j = Splay::find(-A[i] / B[i]); f[i] = max(f[i - 1], j->x * A[i] + j->y * B[i]); node *r = new node(i); r->y = f[i] / (A[i] * Rate[i] + B[i]); r->x = r->y * Rate[i]; Splay::insert(r); } printf("%.3lf ", f[n]); return 0; }
splay好写好调!但是还是得学CDQ分治啊!!!
CDQ分治利用预处理排序,使原先的序列的询问的斜率有序,然后处理左半边,用左半边更新右半边,再处理右半边,这样因为询问的斜率有序,就可以用单调队列或单调栈来维护了,复杂度也是$O(nlog n)$,论文里讲得很清楚啊。
#include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int N = 100003; const double inf = 1e9; const double eps = 1e-9; struct node { double q, a, b, rate, k; int id; } q[N], qq[N]; struct Point { double x, y; bool operator < (const Point &a) const { return (x < a.x) || (fabs(x - a.x) < eps && y < a.y); } } p[N], pp[N]; double get(int x, int y) { if (fabs(p[x].x - p[y].x) < eps) return -inf; return (p[x].y - p[y].y) / (p[x].x - p[y].x); } int st[N], n; double f[N]; void solve(int l, int r) { if (l == r) { f[l] = max(f[l - 1], f[l]); p[l].y = f[l] / (q[l].a * q[l].rate + q[l].b); p[l].x = p[l].y * q[l].rate; return; } int mid = (l + r) >> 1, h = l, t = mid + 1; for(int i = l; i <= r; ++i) if (q[i].id <= mid) qq[h++] = q[i]; else qq[t++] = q[i]; for(int i = l; i <= r; ++i) q[i] = qq[i]; solve(l, mid); int top = 0; for(int i = l; i <= mid; ++i) { while (top >= 2 && get(i, st[top]) > get(st[top], st[top - 1])) --top; st[++top] = i; } t = 1; for(int i = r; i > mid; --i) { while (t < top && q[i].k < get(st[t], st[t + 1])) ++t; f[q[i].id] = max(f[q[i].id], p[st[t]].x * q[i].a + p[st[t]].y * q[i].b); } solve(mid + 1, r); h = l; t = mid + 1; for(int i = l; i <= r; ++i) if ((p[h] < p[t] || t > r) && h <= mid) pp[i] = p[h++]; else pp[i] = p[t++]; for(int i = l; i <= r; ++i) p[i] = pp[i]; } bool cmp(node A, node B) {return A.k < B.k;} int main() { scanf("%d%lf", &n, &f[0]); for(int i = 1; i <= n; ++i) { scanf("%lf%lf%lf", &q[i].a, &q[i].b, &q[i].rate); q[i].k = -q[i].a / q[i].b; q[i].id = i; } sort(q + 1, q + n + 1, cmp); solve(1, n); printf("%.3lf ", f[n]); return 0; }
省队集训期间我充分展现出了自己的弱QAQ(为什么不说发现自己的弱呢,因为我很久以前就发现了TwT)继续努力~后天就要回新校颓文化课了,下一个月好好搞文化课,年级里的排名不能再退步了。希望期末考试能取得较大的进步,毕竟这是我第一次准备认认真真颓文化课QwQ←滚粗狗的无奈
2016-07-11期末挂惨了TwT,比以前任何一次都惨_(:з」∠)_之前的flag too naive!