http://www.lydsy.com/JudgeOnline/problem.php?id=1494
这道题。。因为k很小,而且我们只关心连续的k个节点的连通性,所以把连续的k个点轮廓线上的连通性的最小表示当做状态来转移。
转移可以构造一个矩阵,构造矩阵不难想,但挺麻烦的。。。
时间复杂度(O(Mlen2^kk^2+Mlen^3logn)),Mlen最坏情况下为52。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned int ui;
const ui p = 65521;
ui ipow(ui a, ui b) {
ui t = 1, w = a;
while (b) {
if (b & 1) t = (t * w) % p;
w = (w * w) % p;
b >>= 1;
}
return t;
}
int k;
ll n;
struct data {
int a[5];
} state[53];
int cnt[5], tot = 0, max_now, bi[5], ref[1000003];
ui f[53], ret, rr;
void checkmin(int num) {
rr = num;
for (int i = 0; i < k; ++i) {
bi[i] = num % 10;
if (bi[i] >= k) return;
num /= 10;
}
max_now = -1;
for (int i = 0; i < k; ++i)
if (bi[i] > max_now + 1) return;
else max_now = max(max_now, bi[i]);
++tot; memset(cnt, 0, sizeof(cnt)); ref[rr] = tot;
for (int i = 0; i < k; ++i)
state[tot].a[i] = bi[i], ++cnt[bi[i]];
ret = 1;
for (int i = 0; i < k; ++i)
if (cnt[i] > 1)
ret = ret * ipow(cnt[i], cnt[i] - 2) % p;
f[tot] = ret;
}
struct Matrix {
ui a[53][53];
Matrix() {memset(a, 0, sizeof(a));}
} W, T;
Matrix operator * (Matrix A, Matrix B) {
Matrix C;
for (int k = 1; k <= tot; ++k)
for (int i = 1; i <= tot; ++i)
for (int j = 1; j <= tot; ++j)
C.a[i][j] = (C.a[i][j] + (A.a[i][k] * B.a[k][j] % p)) % p;
return C;
}
bool flag, vis[100003];
int col[5], ora[5];
void mark_matrix(int row, int *pre) {
flag = true; max_now = 0;
for (int i = 1; i < k; ++i) {
max_now = max(max_now, pre[i]);
if (pre[i] == pre[0])
flag = false;
}
int totnum = (1 << (max_now + 1)), mark, lalala, now;
ret = 0;
for (int i = 0; i < totnum; ++i) {
if (flag && (i & 1) == 0) continue;
mark = -1;
for (int j = 0; j < k; ++j) col[j] = j;
for (int j = 0; j <= max_now; ++j)
if ((1 << j) & i) {
if (mark == -1) mark = j;
else col[j] = mark;
}
memset(ora, -1, sizeof(ora)); lalala = -1;
for (int j = 1; j < k; ++j)
if (ora[col[pre[j]]] == -1) bi[j - 1] = (ora[col[pre[j]]] = ++lalala);
else bi[j - 1] = ora[col[pre[j]]];
if (mark != -1 && ora[mark] != -1) bi[k - 1] = ora[mark];
else bi[k - 1] = ++lalala;
now = bi[k - 1];
for (int j = k - 2; j >= 0; --j) now = now * 10 + bi[j];
if (!ref[now]) continue;
ret = 1;
if (mark != -1)
for (int j = 0; j < k; ++j)
if (col[j] == mark) {
rr = 0;
for (int l = 0; l < k; ++l)
if (pre[l] == j) ++rr;
ret = ret * rr % p;
}
W.a[row][ref[now]] = ret;
}
}
int main() {
scanf("%d%lld", &k, &n);
if (k >= n) {printf("%u
", ipow(n, n - 2)); return 0;}
int bas = 1; for (int i = 1; i <= k; ++i) bas = bas * 10;
for (int i = 0; i <= 43210; ++i)
if (!vis[i % bas])
checkmin(i), vis[i % bas] = true;
n -= k;
for (int i = 1; i <= tot; ++i)
mark_matrix(i, state[i].a);
/* for (int i = 1; i <= tot; ++i) {
for (int j = 1; j <= tot; ++j)
printf("%d ", W.a[i][j]);
puts("");
}*/
for (int i = 1; i <= tot; ++i)
T.a[i][i] = 1;
while (n) {
if (n & 1) T = W * T;
W = W * W;
n >>= 1;
}
/* puts("");
for (int i = 1; i <= tot; ++i) {
for (int j = 1; j <= tot; ++j)
printf("%d ", T.a[i][j]);
puts("");
}*/
ui ans = 0;
for (int i = 1; i <= tot; ++i)
ans = (ans + f[i] * T.a[i][1] % p) % p;
printf("%u
", ans);
return 0;
}