zoukankan      html  css  js  c++  java
  • 04-04 AdaBoost算法代码(鸢尾花分类)


    更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html

    AdaBoost算法代码(鸢尾花分类)

    一、导入模块

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    from matplotlib.font_manager import FontProperties
    from sklearn.datasets import load_iris
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import AdaBoostClassifier
    %matplotlib inline
    font = FontProperties(fname='/Library/Fonts/Heiti.ttc')
    

    二、导入数据

    X = iris_data.data[:, [2, 3]]
    y = iris_data.target
    label_list = ['山鸢尾', '杂色鸢尾', '维吉尼亚鸢尾']
    

    三、构造决策边界

    def plot_decision_regions(X, y, classifier=None):
        marker_list = ['o', 'x', 's']
        color_list = ['r', 'b', 'g']
        cmap = ListedColormap(color_list[:len(np.unique(y))])
    
    x1_min, x1_max = X[:, <span class="hljs-number">0</span>].<span class="hljs-built_in">min</span>()<span class="hljs-number">-1</span>, X[:, <span class="hljs-number">0</span>].<span class="hljs-built_in">max</span>()+<span class="hljs-number">1</span>
    x2_min, x2_max = X[:, <span class="hljs-number">1</span>].<span class="hljs-built_in">min</span>()<span class="hljs-number">-1</span>, X[:, <span class="hljs-number">1</span>].<span class="hljs-built_in">max</span>()+<span class="hljs-number">1</span>
    t1 = np.linspace(x1_min, x1_max, <span class="hljs-number">666</span>)
    t2 = np.linspace(x2_min, x2_max, <span class="hljs-number">666</span>)
    
    x1, x2 = np.meshgrid(t1, t2)
    y_hat = classifier.predict(np.array([x1.ravel(), x2.ravel()]).T)
    y_hat = y_hat.reshape(x1.shape)
    plt.contourf(x1, x2, y_hat, alpha=<span class="hljs-number">0.2</span>, cmap=cmap)
    plt.xlim(x1_min, x1_max)
    plt.ylim(x2_min, x2_max)
    
    <span class="hljs-keyword">for</span> ind, clas <span class="hljs-keyword">in</span> <span class="hljs-built_in">enumerate</span>(np.unique(y)):
        plt.scatter(X[y == clas, <span class="hljs-number">0</span>], X[y == clas, <span class="hljs-number">1</span>], alpha=<span class="hljs-number">0.8</span>, s=<span class="hljs-number">50</span>,
                    c=color_list[ind], marker=marker_list[ind], label=label_list[clas])
    

    四、训练模型

    4.1 训练模型(n_e=10, l_r=0.8)

    adbt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5),
                              algorithm="SAMME", n_estimators=10, learning_rate=0.8)
    adbt.fit(X, y)
    
    AdaBoostClassifier(algorithm='SAMME',
              base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=2,
                max_features=None, max_leaf_nodes=None,
                min_impurity_decrease=0.0, min_impurity_split=None,
                min_samples_leaf=5, min_samples_split=20,
                min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                splitter='best'),
              learning_rate=0.8, n_estimators=10, random_state=None)
    

    4.2 可视化

    plot_decision_regions(X, y, classifier=adbt)
    plt.xlabel('花瓣长度(cm)', fontproperties=font)
    plt.ylabel('花瓣宽度(cm)', fontproperties=font)
    plt.title('AdaBoost算法代码(鸢尾花分类, n_e=10, l_r=0.8)',
              fontproperties=font, fontsize=20)
    plt.legend(prop=font)
    plt.show()
    

    png

    print("Score:{}".format(adbt.score(X, y)))
    
    Score:0.9866666666666667
    

    4.3 训练模型(n_estimators=300, learning_rate=0.8)

    adbt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5),
                              algorithm="SAMME", n_estimators=300, learning_rate=0.8)
    adbt.fit(X, y)
    print("Score:{}".format(adbt.score(X, y)))
    
    Score:0.9933333333333333
    

    由于样本太少,可能效果不明显,但是对比上一个模型可以发现,相同步长的情况下,如果弱学习个数越多,拟合效果越好,但如果过多则可能过拟合。

    4.4 训练模型(n_estimators=300, learning_rate=0.5)

    adbt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5),
                              algorithm="SAMME", n_estimators=300, learning_rate=0.001)
    adbt.fit(X, y)
    print("Score:{}".format(adbt.score(X, y)))
    
    Score:0.9533333333333334
    

    相同迭代次数的情况下,对比上一个模型可以发现,如果步长越大,则模型效果越好。

    4.5 训练模型(n_estimators=600, learning_rate=0.7)

    adbt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5),
                              algorithm="SAMME", n_estimators=600, learning_rate=0.8)
    adbt.fit(X, y)
    print("Score:{}".format(adbt.score(X, y)))
    
    Score:0.9933333333333333
    

    对比第二个模型,可以发现即使增加迭代次数,算法准确率也没有提高,所以n_estimators=300的时候其实算法就已经收敛了。

  • 相关阅读:
    <!内容//>请问在CSS里面,这个符号是什么 意思?
    java.sql.Timestamp;
    struts做开发的时候action是继承Action方法还是ActionSupport方法
    @Autowired的用法和作用
    JavaScript方法和技巧大全
    Spring@Autowired注解与自动装配
    关于Class File Editor Source not found
    程序员:各种快捷键的用法及掌握 .
    Struts2的Preparable接口 .
    测试
  • 原文地址:https://www.cnblogs.com/abdm-989/p/14111582.html
Copyright © 2011-2022 走看看