zoukankan      html  css  js  c++  java
  • Auto-Encoders实战

    Outline

    • Auto-Encoder

    • Variational Auto-Encoders

    Auto-Encoder

    51-AutoEncoders实战-autoencoder.jpg

    创建编解码器

    import os
    import tensorflow as tf
    import numpy as np
    from tensorflow import keras
    from tensorflow.keras import Sequential, layers
    from PIL import Image
    from matplotlib import pyplot as plt
    
    tf.random.set_seed(22)
    np.random.seed(22)
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    assert tf.__version__.startswith('2.')
    
    
    def save_images(imgs, name):
        new_im = Image.new('L', (280, 280))
    
        index = 0
        for i in range(0, 280, 28):
            for j in range(0, 280, 28):
                im = imgs[index]
                im = Image.fromarray(im, mode='L')
                new_im.paste(im, (i, j))
                index += 1
    
        new_im.save(name)
    
    
    h_dim = 20  # 784降维20维
    batchsz = 512
    lr = 1e-3
    
    (x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
    x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(
        np.float32) / 255.
    # we do not need label
    train_db = tf.data.Dataset.from_tensor_slices(x_train)
    train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
    test_db = tf.data.Dataset.from_tensor_slices(x_test)
    test_db = test_db.batch(batchsz)
    
    print(x_train.shape, y_train.shape)
    print(x_test.shape, y_test.shape)
    
    
    class AE(keras.Model):
        def __init__(self):
            super(AE, self).__init__()
    
            # Encoders
            self.encoder = Sequential([
                layers.Dense(256, activation=tf.nn.relu),
                layers.Dense(128, activation=tf.nn.relu),
                layers.Dense(h_dim)
            ])
    
            # Decoders
            self.decoder = Sequential([
                layers.Dense(128, activation=tf.nn.relu),
                layers.Dense(256, activation=tf.nn.relu),
                layers.Dense(784)
            ])
    
        def call(self, inputs, training=None):
            # [b,784] ==> [b,19]
            h = self.encoder(inputs)
    
            # [b,10] ==> [b,784]
            x_hat = self.decoder(h)
    
            return x_hat
    
    
    model = AE()
    model.build(input_shape=(None, 784))  # tensorflow尽量用元组
    model.summary()
    
    (60000, 28, 28) (60000,)
    (10000, 28, 28) (10000,)
    Model: "ae"
    _________________________________________________________________
    Layer (type)                 Output Shape              Param #   
    =================================================================
    sequential (Sequential)      multiple                  236436    
    _________________________________________________________________
    sequential_1 (Sequential)    multiple                  237200    
    =================================================================
    Total params: 473,636
    Trainable params: 473,636
    Non-trainable params: 0
    _________________________________________________________________
    

    训练

    optimizer = tf.optimizers.Adam(lr=lr)
    
    for epoch in range(10):
    
        for step, x in enumerate(train_db):
    
            # [b,28,28]==>[b,784]
            x = tf.reshape(x, [-1, 784])
    
            with tf.GradientTape() as tape:
                x_rec_logits = model(x)
    
                rec_loss = tf.losses.binary_crossentropy(x,
                                                         x_rec_logits,
                                                         from_logits=True)
                rec_loss = tf.reduce_min(rec_loss)
    
            grads = tape.gradient(rec_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))
    
            if step % 100 == 0:
                print(epoch, step, float(rec_loss))
                
                # evaluation
    
            x = next(iter(test_db))
            logits = model(tf.reshape(x, [-1, 784]))
            x_hat = tf.sigmoid(logits)
            # [b,784]==>[b,28,28]
            x_hat = tf.reshape(x_hat, [-1, 28, 28])
    
            # [b,28,28] ==> [2b,28,28]
            x_concat = tf.concat([x, x_hat], axis=0)
            # x_concat = x  # 原始图片
            x_concat = x_hat
            x_concat = x_concat.numpy() * 255.
            x_concat = x_concat.astype(np.uint8)  # 保存为整型
            if not os.path.exists('ae_images'):
                os.mkdir('ae_images')
            save_images(x_concat, 'ae_images/rec_epoch_%d.png' % epoch)
    
    0 0 0.09717604517936707
    0 100 0.12493347376585007
    1 0 0.09747321903705597
    1 100 0.12291513383388519
    2 0 0.10048121958971024
    2 100 0.12292417883872986
    3 0 0.10093794018030167
    3 100 0.12260882556438446
    4 0 0.10006923228502274
    4 100 0.12275046110153198
    5 0 0.0993042066693306
    5 100 0.12257824838161469
    6 0 0.0967678651213646
    6 100 0.12443818897008896
    7 0 0.0965462476015091
    7 100 0.12179268896579742
    8 0 0.09197664260864258
    8 100 0.12110235542058945
    9 0 0.0913471132516861
    9 100 0.12342415750026703
    
    
    
  • 相关阅读:
    【转】Redis概念原理、redis面试
    mysql登录后显示用户名与当前数据库名
    (5.3.10)数据库迁移——sql server降级操作
    navicat下载安装破解
    sql server2016+windows server2016使用日志传送做主从,主库无法备份事务日志
    (4.41)sql server如何把xml转换成表格数据?
    .NET Core SDK在Windows系统安装后出现Failed to load the hostfxr.dll等问题的解决方法
    .NET Core实战项目之CMS 第七章 设计篇-用户权限极简设计全过程
    .NET Core实战项目之CMS 第六章 入门篇-Vue的快速入门及其使用
    [译]聊聊C#中的泛型的使用(新手勿入)
  • 原文地址:https://www.cnblogs.com/abdm-989/p/14123449.html
Copyright © 2011-2022 走看看