zoukankan      html  css  js  c++  java
  • 01背包之求第K优解——Bone Collector II

    http://acm.hdu.edu.cn/showproblem.php?pid=2639

    题目大意是,往背包里赛骨头,求第K优解,在普通01背包的基础上,增加一维空间,那么F[i,v,k]可以理解为前i个物品,放入容量v的背包时,第K优解的值。时间复杂度为O(NVK)。

    Talk is cheap.

    看代码吧。

    import java.util.Scanner;
    
    
    public class BoneCollector {
        public static void main(String[] sure) {
            int t;
            Scanner sc = new Scanner(System.in);
            t = sc.nextInt();
            while (t-- > 0) {
                int n, v, k;
                n = sc.nextInt();
                v = sc.nextInt();
                k = sc.nextInt();
                int[] val = new int[n + 1];
                int[] vol = new int[n + 1];
                int[][] dp = new int[v + 2][k + 2];
                int[] tp_a = new int[k + 2];
                int[] tp_b = new int[k + 2];
    
                for (int i = 0; i < n; i++) {
                    val[i] = sc.nextInt();
                }
                for (int i = 0; i < n; i++) {
                    vol[i] = sc.nextInt();
                }
                for (int i = 0; i < n; i++) {
                    for (int j = v; j >= vol[i]; j--) {
                        for (int m = 1; m <= k; m++) {
                            tp_a[m] = dp[j][m];
                            tp_b[m] = dp[j - vol[i]][m] + val[i];
                        }
                        int tmp = 1, a = 1, b = 1;
                        tp_a[k+1] = tp_b[k+1] = -1;
                        //循环,依次将前K优的存到dp数组
                        while (tmp <= k && (a <= k || b <= k)) {
                            if (tp_a[a] > tp_b[b]) {
                                dp[j][tmp] = tp_a[a];
                                a++;
                            } else {
                                dp[j][tmp] = tp_b[b];
                                b++;
                            }
                            if (dp[j][tmp] != dp[j][tmp - 1])
                                tmp++;
                        }
                    }
                }
                System.out.println(dp[v][k]);
            }
        }
    }
  • 相关阅读:
    欧拉定理 (证明+在求逆元上的应用)
    【转】弱校的ACM奋斗史
    SDUT 2412 (单调队列 + dp)
    做SRM感想。。。
    平面图中最小割向最短路的转化
    HDU 4533
    黑书上的DP 30题
    POJ【数论/组合/博弈论】题目列表
    HDU 4534 郑厂长系列故事——新闻净化
    SRM 571
  • 原文地址:https://www.cnblogs.com/aboutblank/p/4345833.html
Copyright © 2011-2022 走看看