Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
跟上一个题类似。
题目大意:左上走到右下,1表示障碍,0表示路,问有多少种唯一的走法。
解题思路:简单的动规,F(i,j)=F(i-1,j)+F(i,j-1),如果grid[i][j]==1,那么F(i,j)=0。
public class Solution { public int uniquePathsWithObstacles(int[][] og) { if(og==null||og[0].length==0||og[0][0]==1){ return 0; } int m = og.length,n=og[0].length; int[][] cnt = new int[m][n]; cnt[0][0]=1; for(int i=0;i<m;i++){ for(int j=0;j<n;j++){ if((i==0&&j==0)||og[i][j]==1){ continue; } else if(i==0&&j!=0){ cnt[i][j]=cnt[i][j-1]; } else if(j==0&&i!=0){ cnt[i][j]=cnt[i-1][j]; } else { cnt[i][j]=cnt[i-1][j]+cnt[i][j-1]; } } } return cnt[m-1][n-1]; } }