zoukankan      html  css  js  c++  java
  • anaconda及jupyter notebook的了解及使用方法(1)

    今日内容

    • anaconda软件使用
    • jupyter notebook基本使用及快捷键
    • numpy

    anaconda软件使用

    1.进入anaconda主页点击jupyter启动即可
    	呼起一个jupyter notebook前端可视化界面
        地址就是cmd窗口默认的路径
     
    2.右侧下拉框
    	Text File
        	新建一个文本文件,默认的文件名时untitled.txt双击可修改
       
    	Folder
        	新建一个文件夹,默认的文件名时untitled Folder
            鼠标勾选前面的按钮 上方会出现rename选项点击修改
        
        Terminal
        	内嵌了一个本机的cmd窗口
            
        重点
        Python3
        	会自动创建一个jupyter notebook文件
            默认的文件是Untitled.ipynb
            # ipynb后缀名是jupyter notebook独有的文件
            以后如果你拿到了一个后缀是ipynb的文件,你就应该使用jupyter notebook打开它
            如何打开ipynb文件,点击右侧的upload按钮选择即可
            
    3.左侧导航栏
     1.Edit里面
    	cut cells               剪切单元格
        copy cells              拷贝单元格
        paste cells above       在当前单元格的上面粘贴
        paste cells below       在当前单元格的下面粘贴
        paste cells & replace   粘贴或者替换 
        delete cells            删除单元格
        undo delete cells       撤销删除
        split cell              切割单元格
        merge cell above        跟上面单元格合并
        merge cell below        跟下面单元格合并
        move cell up            单元格上移
        move cell down          单元格下移
        
     2.View 控制展示
    	toggle header        	控制展示文件头
        toggle loolbar       	控制展示快捷菜单
        toggle line number   	控制展示代码行
        
     3.Insert 里面
    	insert cell above       在当前单元格的上方插入新的单元格
        insert cell below       在当前单元格的下方插入新的单元格
        
     4.cell 里面
    	run cells                     运行当前单元格
        run cells and select below    运行并且自动选择下一个单元格
        run cells and insert below    运行并自动在下方插入一新的单元格
        run all                       运行所有的单元格
        run all above                 运行当前单元格上面所有的单元格
        run all below                 运行当前单元格下面所有的单元格
     5.kernel
             主要是内核操作   工作时不要乱点
    

    常用快捷键

    1.颜色变化
        绿色
            编辑模式(写啥就是啥)
        蓝色
            命令行模式(直接使用快捷键)
            
    2.运行当前单元格并选中下一个单元格
        shift+enter
    3.运行当前单元格
        ctrl+enter
    4.在单元格的上方添加一个单元格
        1.你需要先按一下esc键进入命令行模式(颜色变为蓝色)
        2.再按一下a键即可
    5.在单元格的上方添加一个单元格
        1.你需要先按一下esc键进入命令行模式(颜色变为蓝色)
        2.再按一下b键即可
    6.删除一个单元格
        1.你需要先按一下esc键进入命令行模式(颜色变为蓝色)
        2.按两下d键
    7.代码与markdown切换
        1.你需要先按一下esc键进入命令行模式(颜色变为蓝色)
        2.再按一下m键
    8.更多快捷键操作,自己参考help提示(不需要可以的去记忆 用得多了就回了)
    

    numpy模块

    '''在起文件名的时候一定不要跟模块名冲突'''
    numpy优势
    	1.是高性能科学运算和数据分析的基础包
        2.也是其他数据分析模块的基础
        3.提供了更加方便快捷的数学计算方法
        4.支持向量运算,使得数据处理更加的简单
       
    # 在使用numpy的时候需要些固定的导入语句
    import numpy as np  # 官方推荐的起别名
    '''
    以后在用notebook的时候 将所有导入模块的语句全部放在第一行
    '''
    
    # numpy前戏
    # 计算一下购物车里面每种商品的总价格
    shop_car = [2,4,5,7,9]  # 列表里面放的是每个商品的个数
    shop_price = [10,22,66,89,6969]  # 列表里面放的是每个商品的单价
    # shop_car * shop_price  # python中的列表不支持该操作(向量操作)
    shop_car_np = np.array(shop_car)
    shop_price_np = np.array(shop_price)
    res = shop_car_np * shop_price_np
    # 求所有商品的总价
    res.sum()
    

    ndarray数组

    1.如何产生ndarray
    np.array([1,2,3,4,5])
    
    # 一维数组
    res1 = np.array([1,2,3,4,5])
    array([1,2,3,4,5])
    
    # 二维数组
    res2 = np.array([[1,2,3,4],[5,6,7,8]])
    array([[1, 2, 3, 4],
           [5, 6, 7, 8]])
    
    # 三维数组(使用较少)
    res3 = np.array([[[1,2,3,4,5],[6,7,8,9,10],[11,22,33,44,55]]])
    array([[[ 1,  2,  3,  4,  5],
            [ 6,  7,  8,  9, 10],
            [11, 22, 33, 44, 55]]])
    

    常用属性

    # 数组的转置(针对二维和三维):将行变成列将列变成行
    res4 = np.array([[1,2,3,4],[5,6,7,8]])
    array([[1, 2, 3, 4],
           [5, 6, 7, 8]])
    res4.T  # 该方法并没有改变res4只是产生了一个新的数组
    array([[1, 5],
           [2, 6],
           [3, 7],
           [4, 8]])
    
    # 数组元素类型
    res4.dtype
    dtype('int32')
    
    # 数组元素个数(就是简单粗暴的统计里面的元素个数不分行列)
    res4.size
    8
    
    # 判断数组是几维的
    res1.ndim
    
    # 判断数组的维度大小
    res1.shape
    (6,)
    res2.shape
    (2, 4)
    res3.shape
    (1, 3, 5)
    

    数据类型

    '''numpy中为了跟python中的数据类型关键字做区分 会用下划线来做'''
    python中					numpy中
    int						int_
    float					float_
    bool					bool_
    

    类型转换

    res4.dtype
    array([[1, 2, 3, 4],
           [5, 6, 7, 8]])
    
    res4.astype('float')
    array([[1., 2., 3., 4.],
           [5., 6., 7., 8.]])
    
    为了舒适的结果,眼前的坎坷路程即使再长都是值得的。
  • 相关阅读:
    笔记本CPU
    [转]Linux管理员新手易犯的十种错误
    Linux 如何禁止用户登录
    Linux 工作人员之间的交互
    双核处理器
    Ant时间戳的使用
    [转]linux+php5.1.6+mysql5.0.2+apache2.0.55安装配置说明
    ADDM 报告结果中的相关术语
    Mysql 用户密码
    [转]Linux系统中用户帐户清洁与安全方法
  • 原文地址:https://www.cnblogs.com/abudrSatan1998/p/13595547.html
Copyright © 2011-2022 走看看