zoukankan      html  css  js  c++  java
  • hdu 4379 The More The Better ( 2012 MultiUniversity Training Contest 8)

    The More The Better

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 800    Accepted Submission(s): 208


    Problem Description
    Given an sequence of numbers {X1, X2, ... , Xn}, where Xk = (A * k + B) % mod. Your task is to find the maximum sub sequence {Y1, Y2, ... , Ym} where every pair of (Yi, Yj) satisfies Yi + Yj <= L (1 ≤ i < j ≤ m), and every Yi <= L (1 ≤ i ≤ m ).
    Now given n, L, A, B and mod, your task is to figure out the maximum m described above.
     

    Input
    Multiple test cases, process to the end of input. Every test case has a single line. A line of 5 integers: n, L, A, B and mod. (1 ≤ n ≤ 2*107, 1 ≤ L ≤ 2*109, 1 ≤ A, B, mod ≤ 109)
     

    Output
    For each case, output m in one line.
     

    Sample Input
    1 8 2 3 6

    5 8 2 3 6

     

    Sample Output
    1 4
     

    Source
     
     

    简单题,首先想到所有小于 L/2 的,统统可以放进来,最后,按照题意,还可能可以放一个大于 L/2 的数进来,当小于 L/2 的数里面的最大值加上这个大于 L/2 的数的和小于 L 时,答案加一。最后要注意所有数都小于 L/2 的处理。O(n) 算法可过此题。

    好想说这是好蛋疼的一道题,错了不知道多少次 ,发现 错在了  min = 1<<62  和 min = 1   min<<= 62  的值竟然不一样(min 为 long long)tmd。。。。。

    View Code
     1 #include<stdio.h>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cstring>
     5 #include<cmath>
     6 #include<queue>
     7 #include<set>
     8 #include<map>
     9 #define Min(a,b)  a>b?b:a
    10 #define Max(a,b)  a>b?a:b
    11 #define CL(a,num)  memset(a,num,sizeof(a));
    12 #define inf  1<<62
    13 #define maxn    1000010
    14 #define eps  1e-6
    15 #define ll  __int64
    16 
    17 
    18 using namespace std;
    19 
    20 
    21 int main()
    22 {
    23 
    24     ll a,b;
    25 
    26     ll mod,n;
    27     ll l;
    28      int  k;
    29      //freopen("data.txt","r",stdin);
    30     while(scanf("%I64d%I64d%I64d%I64d%I64d",&n,&l,&a,&b,&mod)!=EOF)
    31     {
    32          ll mx = 0;
    33         int cnt = 0;
    34         ll  mi = inf ; 
    35          int mid = l/2;
    36         for( k = 1 ; k <= n;++k)
    37         {
    38              ll tmp = ( a*k + b)%mod ;
    39             if(tmp <= mid)
    40             {
    41                 cnt ++;
    42                 if(tmp > mx) mx = tmp;
    43 
    44             }
    45             else
    46             {
    47 
    48                 if(mi > tmp) mi = tmp ;
    49 
    50 
    51             }
    52 
    53         }
    54 
    55 
    56         if(mi + mx <= l)cnt++;
    57         printf("%d\n",cnt);
    58     }
    59     return 0;
    60 
    61 }
  • 相关阅读:
    调研当前大学生的三个痛点
    作业-- 统计文本文件中的字符数、单词数、行数
    我的课程表--项目需求分析
    Android随机生成四则运算
    校友信息管理&SNS互动平台之前言、目录及说明
    校友信息管理&SNS互动平台之技术框架选择
    校友信息管理系统&SNS互动平台之用户需求及概要设计
    WordPress文件上传与下载问题解决
    oc - NSArray基础用法总结
    AutoLayout 使用详细
  • 原文地址:https://www.cnblogs.com/acSzz/p/2643133.html
Copyright © 2011-2022 走看看