zoukankan      html  css  js  c++  java
  • 欧拉常数(调和级数求和) Harmonic Number

    In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:
    

    这里写图片描述
    这里写图片描述
    In this problem, you are given n, you have to find Hn.
    Input

    Input starts with an integer T (≤ 10000), denoting the number of test cases.
    
    Each case starts with a line containing an integer n (1 ≤ n ≤ 108).
    

    Output

    For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.
    

    Sample Input

    12
    
    1
    
    2
    
    3
    
    4
    
    5
    
    6
    
    7
    
    8
    
    9
    
    90000000
    
    99999999
    
    100000000
    

    Sample Output

    Case 1: 1
    
    Case 2: 1.5
    
    Case 3: 1.8333333333
    
    Case 4: 2.0833333333
    
    Case 5: 2.2833333333
    
    Case 6: 2.450
    
    Case 7: 2.5928571429
    
    Case 8: 2.7178571429
    
    Case 9: 2.8289682540
    
    Case 10: 18.8925358988
    
    Case 11: 18.9978964039
    
    Case 12: 18.9978964139
    

    公式。。。记住就行
    欧拉常数y=0.57721566490153286060651209
    ans=log(n)+y+1.0/(2*n)

    #include <iostream>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <stdio.h>
    using namespace std;
    typedef long long ll;
    const int INF=0x3f3f3f3f;
    const int maxn=1e4;
    double f[maxn+5];
    int main()
    {
        int T;
        cin>>T;
        f[1]=1;
        for(int i=2;i<=maxn;i++)
            f[i]=f[i-1]+1.0/i;
        for(int cas=1;cas<=T;cas++)
        {
            int n;
            cin>>n;
            if(n<=maxn)
            printf("Case %d: %.10lf
    ",cas,f[n]);
            else
            {
                double ans=log(n)+0.57721566490153286060651209+1.0/(2*n);
                printf("Case %d: %.10lf
    ",cas,ans);
            }
        }
        return 0;
    }
  • 相关阅读:
    地铁结队开发(一)
    构建之法(一)——软件工程师的成长
    第二周学习总结
    新的开始
    开学第一周作业
    第一周学习总结
    软件工程第六周总结
    软件工程第五周总结
    清明节第三天
    清明节第二天
  • 原文地址:https://www.cnblogs.com/acagain/p/9180721.html
Copyright © 2011-2022 走看看