The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
题目大意:
给定一个长为n的序列。求1..n,2..n..1,3..n..12,4..n..1..3,...这n种排列最小的逆序数。
1、树状数组
写这道题更多地是给自己一个树状数组的模板。建立在sum数组上的lowbit,add,getsum三个操作。
2、求逆序数
在初始全为0的长为n的数组上的操作。结构体排序。若有重复的值,注意排序的比较方式,应当是序号较大的排在后面,避免被记入逆序数。
3、本题技巧
0..n-1这n个数的序列。若第一个数为a,将其放至最后一位,则逆序数减少a,增加n-1-a,从而看做增加n-1-2a。
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int maxn=5000; const int inf=1000000000; int a[maxn+10]; struct tnode { int num; int seq; bool operator<(const tnode& y) const { return num<y.num; } }; tnode node[maxn+10]; int sum[maxn+10]; inline int lowbit(int x) { return x&-x; } inline void add(int x,int val,int n)//向1..n序列的x位置加上val { for(int i=x;i<=n;i+=lowbit(i)) sum[i]+=val; } inline int getsum(int x)//1..x的和 { int ret=0; for(int i=x;i;i-=lowbit(i)) ret+=sum[i]; return ret; } int main() { int n; while(scanf("%d",&n)!=EOF) { for(int i=1;i<=n;i++) scanf("%d",a+i); for(int i=1;i<=n;i++) node[i]=(tnode){a[i],i}; sort(node+1,node+n+1); int ans0=0; memset(sum,0,sizeof(sum)); for(int i=n;i>=1;i--) { ans0+=getsum(node[i].seq); add(node[i].seq,1,n); } int ans=ans0; for(int i=1;i<n;i++) { ans0=ans0+n-1-2*a[i];//0..n-1的排列逆序数规律 ans=min(ans,ans0); } printf("%d ",ans); } return 0; }