zoukankan      html  css  js  c++  java
  • poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence:

    • the empty sequence is a regular brackets sequence,
    • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
    • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    • no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:

    (), [], (()), ()[], ()[()]

    while the following character sequences are not:

    (, ], )(, ([)], ([(]

    Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

    Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

    Input

    The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

    Output

    For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

    Sample Input

    ((()))
    ()()()
    ([]])
    )[)(
    ([][][)
    end

    Sample Output

    6
    6
    4
    0
    6

    题目大意:

    给你一串由 [ ] ( ) 组成的字符串。问最大匹配长度。

    区间dp基础题。

    dp[i][j]存储i..j字符串的最大匹配长度。预处理出长度为2的区间匹配长度。

    dp[i][j]有两种更新方式:如果s[i]与s[j]匹配,那么dp[i][j]=2+dp[i+1][j-1];接着枚举i..j的所有间断点k:dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j])。

    区间dp常规操作:

    枚举区间长度、枚举左端点、计算右端点、枚举间断点并merge。

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    
    using namespace std;
    
    const int maxn=100;
    
    char s[maxn+5];
    int dp[maxn+5][maxn+5];
    
    int main()
    {
        while(scanf("%s",s+1),s[1]!='e')
        {
            int n=strlen(s+1);
    
            //预处理出长度为2的区间匹配长度,其余区间全都预置为0
            memset(dp,0,sizeof(dp));
            for(int i=1;i<n;i++)
            {
                if((s[i]=='('&&s[i+1]==')')||(s[i]=='['&&s[i+1]==']'))
                    dp[i][i+1]=2;
            }
    
            //区间DP
            for(int len=3;len<=n;len++)
            {
                for(int left=1;left<=n;left++)
                {
                    int right=left+len-1;
                    if(right>n)
                        break;
                    //两种状态转移情况都可能发生
                    if((s[left]=='('&&s[right]==')')||(s[left]=='['&&s[right]==']'))
                        dp[left][right]=2+dp[left+1][right-1];
                    for(int k=left;k<right;k++)
                        dp[left][right]=max(dp[left][right],dp[left][k]+dp[k+1][right]);
                    //printf("%d %d %d
    ",left,right,dp[left][right]);
                }
            }
    
            printf("%d
    ",dp[1][n]);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    Inno Setup区段之Dirs篇
    Inno Setup区段之Tasks篇
    leetcode刷题-69x的平方根
    7.27 判断子序列
    7.26 矩阵中的最长递增路径
    PMP | 备考笔记
    数据结构--数组存储二叉树(Java)
    数据结构--哈希表(Java)
    查找--斐波那契查找(Java)
    牛客网--字节跳动面试题--特征提取
  • 原文地址:https://www.cnblogs.com/acboyty/p/9747612.html
Copyright © 2011-2022 走看看