Problem Definition:
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two
nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
思路:由根节点开始:
1) 如果根节点的值等于其中一个节点,则根节点就是要找的最低公共祖先,返回它;
2) 排序,确保p<=q;
3) 如果根节点值大于p而小于q,则p和q分别在根节点的左右子树,根节点就是要找的最低公共祖先,返回它;
4) 如果根节点值大于较大的q,则p和q都在根节点的左子树,令根节点左子节点为新的根节点;如果根节点值小于较小的p,则p和q都在根节点的右子树
另根节点右子节点为新的根节点;
5)递归地进行1)-->4).
代码:
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: # @param {TreeNode} root # @param {TreeNode} p # @param {TreeNode} q # @return {TreeNode} def lowestCommonAncestor(self, root, p, q): if (root.val==p.val) or (root.val==q.val): return root if p.val>q.val: p,q=q,p if p.val<root.val and root.val<q.val: return root if root.val>q.val: root=root.left if root.val<p.val: root=root.right if root!=None: return self.lowestCommonAncestor(root, p, q)