Problem Definition:
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Solution: 可以用动态规划来解。令爬n级阶梯的方式有f(n)种。
要到达第n级阶梯,要么是从第n-1级阶梯爬一步,要么是从第n-2级阶梯爬两步(一次性)。而这两种情况是没有交集的。
因此得到:f(n)=f(n-1)+f(n-2) (当n>1)
oops...正是斐波那契数列。
1 def climbStairs(n): 2 a,b,i=[1]*3 3 while i<n: 4 a,b=b,a+b 5 i+=1 6 return b