zoukankan      html  css  js  c++  java
  • LeetCode #4 (A nice explanation from MissMary)

    Given a sorted array A with length m, we can split it into two part:

    { A[0], A[1], ... , A[i - 1] } | { A[i], A[i + 1], ... , A[m - 1] }

    All elements in right part are greater than elements in left part.

    The left part has "i" elements, and right part has "m - i" elements.

    There are "m + 1" kinds of splits. (i = 0 ~ m)

    When i = 0, the left part has "0" elements, right part has "m" elements.

    When i = m, the left part has "m" elements, right part has "0" elements.

    For array B, we can split it with the same way:

    { B[0], B[1], ... , B[j - 1] } | { B[j], B[j + 1], ... , B[n - 1] }

    The left part has "j" elements, and right part has "n - j" elements.

    Put A's left part and B's left part into one set. (Let's name this set "LeftPart")

    Put A's right part and B's right part into one set. (Let's name this set"RightPart")

                LeftPart           |            RightPart 
    { A[0], A[1], ... , A[i - 1] } | { A[i], A[i + 1], ... , A[m - 1] }
    { B[0], B[1], ... , B[j - 1] } | { B[j], B[j + 1], ... , B[n - 1] }

    If we can ensure:

     1) LeftPart's length == RightPart's length (or RightPart's length + 1)
    
     2) All elements in RightPart are greater than elements in LeftPart.

    then we split all elements in {A, B} into two parts with eqaul length, and one part is

    always greater than the other part. Then the median can be easily found.

    To ensure these two condition, we just need to ensure:

     (1) i + j == m - i + n - j (or: m - i + n - j + 1)
    
         if n >= m, we just need to set: 
    
               i = 0 ~ m, j = (m + n + 1) / 2 - i
    
     (2) B[j - 1] <= A[i] and A[i - 1] <= B[j]
    
         considering edge values, we need to ensure:
    
               (j == 0 or i == m or B[j - 1] <= A[i]) and 
    
                   (i == 0 or j == n or A[i - 1] <= B[j])

    So, all we need to do is:

     Search i from 0 to m, to find an object "i" to meet condition (1) and (2) above.
    

    And we can do this search by binary search. How?

    If B[j0 - 1] > A[i0], then the object "ix" can't be in [0, i0]. Why?

     Because if ix < i0, then jx = (m + n + 1) / 2 - ix > j0, 
    
     then B[jx - 1] >= B[j0 - 1] > A[i0] >= A[ix]. This violates
    
     the condition (2). So ix can't be less than i0.

    And if A[i0 - 1] > B[j0], then the object "ix" can't be in [i0, m].

    So we can do the binary search following steps described below:

    1. set imin, imax = 0, m, then start searching in [imin, imax]
    
    2. i = (imin + imax) / 2; j = (m + n + 1) / 2 - i
    
    3. if B[j - 1] > A[i]: continue searching in [i + 1, imax]
       elif A[i - 1] > B[j]: continue searching in [imin, i - 1]
       else: bingo! this is our object "i"

    When the object i is found, the median is:

    max(A[i - 1], B[j - 1]) (when m + n is odd)
    
    or (max(A[i - 1], B[j - 1]) + min(A[i], B[j])) / 2 (when m + n is even)
    

      

    Below is the accepted code:

    def median(A, B):
        m, n = len(A), len(B)
    
        if m > n:
            A, B, m, n = B, A, n, m
    
        imin, imax, half_len = 0, m, (m + n + 1) / 2
        while imin <= imax:
            i = (imin + imax) / 2
            j = half_len - i
            if j > 0 and i < m and B[j - 1] > A[i]:
                imin = i + 1
            elif i > 0 and j < n and A[i - 1] > B[j]:
                imax = i - 1
            else:
                if i == 0:
                    num1 = B[j - 1]
                elif j == 0:
                    num1 = A[i - 1]
                else:
                    num1 = max(A[i - 1], B[j - 1])
    
                if (m + n) % 2 == 1:
                    return num1
    
                if i == m:
                    num2 = B[j]
                elif j == n:
                    num2 = A[i]
                else:
                    num2 = min(A[i], B[j])
    
                return (num1 + num2) / 2.0
  • 相关阅读:
    记录一次使用npm包管理器的过程
    Markdown---锚点
    Tomcat应用部署
    记录项目中使用SoapUI进行webservice接口测试
    python--使用logging库自定义日志输出
    python--configparser库处理配置文件
    python--excel操作插件openpyxl
    python--使用pycharm调试代码
    【云剪贴板】你不要点开啊!!!!
    【每天一个爆零小技巧】个人用的程序小技巧及其他_自用
  • 原文地址:https://www.cnblogs.com/acetseng/p/4782833.html
Copyright © 2011-2022 走看看