zoukankan      html  css  js  c++  java
  • LeetCode #4 (A nice explanation from MissMary)

    Given a sorted array A with length m, we can split it into two part:

    { A[0], A[1], ... , A[i - 1] } | { A[i], A[i + 1], ... , A[m - 1] }

    All elements in right part are greater than elements in left part.

    The left part has "i" elements, and right part has "m - i" elements.

    There are "m + 1" kinds of splits. (i = 0 ~ m)

    When i = 0, the left part has "0" elements, right part has "m" elements.

    When i = m, the left part has "m" elements, right part has "0" elements.

    For array B, we can split it with the same way:

    { B[0], B[1], ... , B[j - 1] } | { B[j], B[j + 1], ... , B[n - 1] }

    The left part has "j" elements, and right part has "n - j" elements.

    Put A's left part and B's left part into one set. (Let's name this set "LeftPart")

    Put A's right part and B's right part into one set. (Let's name this set"RightPart")

                LeftPart           |            RightPart 
    { A[0], A[1], ... , A[i - 1] } | { A[i], A[i + 1], ... , A[m - 1] }
    { B[0], B[1], ... , B[j - 1] } | { B[j], B[j + 1], ... , B[n - 1] }

    If we can ensure:

     1) LeftPart's length == RightPart's length (or RightPart's length + 1)
    
     2) All elements in RightPart are greater than elements in LeftPart.

    then we split all elements in {A, B} into two parts with eqaul length, and one part is

    always greater than the other part. Then the median can be easily found.

    To ensure these two condition, we just need to ensure:

     (1) i + j == m - i + n - j (or: m - i + n - j + 1)
    
         if n >= m, we just need to set: 
    
               i = 0 ~ m, j = (m + n + 1) / 2 - i
    
     (2) B[j - 1] <= A[i] and A[i - 1] <= B[j]
    
         considering edge values, we need to ensure:
    
               (j == 0 or i == m or B[j - 1] <= A[i]) and 
    
                   (i == 0 or j == n or A[i - 1] <= B[j])

    So, all we need to do is:

     Search i from 0 to m, to find an object "i" to meet condition (1) and (2) above.
    

    And we can do this search by binary search. How?

    If B[j0 - 1] > A[i0], then the object "ix" can't be in [0, i0]. Why?

     Because if ix < i0, then jx = (m + n + 1) / 2 - ix > j0, 
    
     then B[jx - 1] >= B[j0 - 1] > A[i0] >= A[ix]. This violates
    
     the condition (2). So ix can't be less than i0.

    And if A[i0 - 1] > B[j0], then the object "ix" can't be in [i0, m].

    So we can do the binary search following steps described below:

    1. set imin, imax = 0, m, then start searching in [imin, imax]
    
    2. i = (imin + imax) / 2; j = (m + n + 1) / 2 - i
    
    3. if B[j - 1] > A[i]: continue searching in [i + 1, imax]
       elif A[i - 1] > B[j]: continue searching in [imin, i - 1]
       else: bingo! this is our object "i"

    When the object i is found, the median is:

    max(A[i - 1], B[j - 1]) (when m + n is odd)
    
    or (max(A[i - 1], B[j - 1]) + min(A[i], B[j])) / 2 (when m + n is even)
    

      

    Below is the accepted code:

    def median(A, B):
        m, n = len(A), len(B)
    
        if m > n:
            A, B, m, n = B, A, n, m
    
        imin, imax, half_len = 0, m, (m + n + 1) / 2
        while imin <= imax:
            i = (imin + imax) / 2
            j = half_len - i
            if j > 0 and i < m and B[j - 1] > A[i]:
                imin = i + 1
            elif i > 0 and j < n and A[i - 1] > B[j]:
                imax = i - 1
            else:
                if i == 0:
                    num1 = B[j - 1]
                elif j == 0:
                    num1 = A[i - 1]
                else:
                    num1 = max(A[i - 1], B[j - 1])
    
                if (m + n) % 2 == 1:
                    return num1
    
                if i == m:
                    num2 = B[j]
                elif j == n:
                    num2 = A[i]
                else:
                    num2 = min(A[i], B[j])
    
                return (num1 + num2) / 2.0
  • 相关阅读:
    摄像机Rtsp地址格式大全
    Html5 播放Hls格式视频
    Libx264 编码错误 Input picture width(320) is greater than stride (0)
    xtrabackup: error: last checkpoint LSN (3409281307) is larger than last copied LSN (3409274368). #2
    通过FEDERATED存储引擎同步两实例间的表数据
    MySQL将内存用在了哪里
    通过performance schema收集慢查询
    记一次定时备份任务的失败原因
    mysqld got signal 11
    修改mysql数据的字符集校验规则使其区分大小写
  • 原文地址:https://www.cnblogs.com/acetseng/p/4782833.html
Copyright © 2011-2022 走看看