zoukankan      html  css  js  c++  java
  • LeetCode #4 (A nice explanation from MissMary)

    Given a sorted array A with length m, we can split it into two part:

    { A[0], A[1], ... , A[i - 1] } | { A[i], A[i + 1], ... , A[m - 1] }

    All elements in right part are greater than elements in left part.

    The left part has "i" elements, and right part has "m - i" elements.

    There are "m + 1" kinds of splits. (i = 0 ~ m)

    When i = 0, the left part has "0" elements, right part has "m" elements.

    When i = m, the left part has "m" elements, right part has "0" elements.

    For array B, we can split it with the same way:

    { B[0], B[1], ... , B[j - 1] } | { B[j], B[j + 1], ... , B[n - 1] }

    The left part has "j" elements, and right part has "n - j" elements.

    Put A's left part and B's left part into one set. (Let's name this set "LeftPart")

    Put A's right part and B's right part into one set. (Let's name this set"RightPart")

                LeftPart           |            RightPart 
    { A[0], A[1], ... , A[i - 1] } | { A[i], A[i + 1], ... , A[m - 1] }
    { B[0], B[1], ... , B[j - 1] } | { B[j], B[j + 1], ... , B[n - 1] }

    If we can ensure:

     1) LeftPart's length == RightPart's length (or RightPart's length + 1)
    
     2) All elements in RightPart are greater than elements in LeftPart.

    then we split all elements in {A, B} into two parts with eqaul length, and one part is

    always greater than the other part. Then the median can be easily found.

    To ensure these two condition, we just need to ensure:

     (1) i + j == m - i + n - j (or: m - i + n - j + 1)
    
         if n >= m, we just need to set: 
    
               i = 0 ~ m, j = (m + n + 1) / 2 - i
    
     (2) B[j - 1] <= A[i] and A[i - 1] <= B[j]
    
         considering edge values, we need to ensure:
    
               (j == 0 or i == m or B[j - 1] <= A[i]) and 
    
                   (i == 0 or j == n or A[i - 1] <= B[j])

    So, all we need to do is:

     Search i from 0 to m, to find an object "i" to meet condition (1) and (2) above.
    

    And we can do this search by binary search. How?

    If B[j0 - 1] > A[i0], then the object "ix" can't be in [0, i0]. Why?

     Because if ix < i0, then jx = (m + n + 1) / 2 - ix > j0, 
    
     then B[jx - 1] >= B[j0 - 1] > A[i0] >= A[ix]. This violates
    
     the condition (2). So ix can't be less than i0.

    And if A[i0 - 1] > B[j0], then the object "ix" can't be in [i0, m].

    So we can do the binary search following steps described below:

    1. set imin, imax = 0, m, then start searching in [imin, imax]
    
    2. i = (imin + imax) / 2; j = (m + n + 1) / 2 - i
    
    3. if B[j - 1] > A[i]: continue searching in [i + 1, imax]
       elif A[i - 1] > B[j]: continue searching in [imin, i - 1]
       else: bingo! this is our object "i"

    When the object i is found, the median is:

    max(A[i - 1], B[j - 1]) (when m + n is odd)
    
    or (max(A[i - 1], B[j - 1]) + min(A[i], B[j])) / 2 (when m + n is even)
    

      

    Below is the accepted code:

    def median(A, B):
        m, n = len(A), len(B)
    
        if m > n:
            A, B, m, n = B, A, n, m
    
        imin, imax, half_len = 0, m, (m + n + 1) / 2
        while imin <= imax:
            i = (imin + imax) / 2
            j = half_len - i
            if j > 0 and i < m and B[j - 1] > A[i]:
                imin = i + 1
            elif i > 0 and j < n and A[i - 1] > B[j]:
                imax = i - 1
            else:
                if i == 0:
                    num1 = B[j - 1]
                elif j == 0:
                    num1 = A[i - 1]
                else:
                    num1 = max(A[i - 1], B[j - 1])
    
                if (m + n) % 2 == 1:
                    return num1
    
                if i == m:
                    num2 = B[j]
                elif j == n:
                    num2 = A[i]
                else:
                    num2 = min(A[i], B[j])
    
                return (num1 + num2) / 2.0
  • 相关阅读:
    [招聘]打造一支全球顶尖医疗影像研发团队
    WCF Service示例
    SCRUM节外生枝(四)
    SCRUM节外生枝(二)
    面试时,你会问面试官哪些问题?
    第一篇博客 依旧敏捷
    Scrum框架及其背后的原则(下)——框架背后的原则及实施过程不良症状分析[转载自InfoQ]
    参加“启动敏捷实施的5项准备”讲座的一些收获
    参加SCRUM中文网举办的第四期敏捷沙龙纪要
    视觉与错觉[转载]
  • 原文地址:https://www.cnblogs.com/acetseng/p/4782833.html
Copyright © 2011-2022 走看看