zoukankan      html  css  js  c++  java
  • poj 2480 Longge's problem(欧拉函数)

    Description

    Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N. 
    "Oh, I know, I know!" Longge shouts! But do you know? Please solve it. 

    Input

    Input contain several test case. 
    A number N per line. 

    Output

    For each N, output ,∑gcd(i, N) 1<=i <=N, a line

    Sample Input

    2
    6

    Sample Output

    3
    15
    解题思路:给出一个数n,求1-n这n个数与n的最大公约数之和。举个栗子:当n=4时,1,2,3,4与4的最大公约数分别为1,2,1,4,累加和为8。正解:1-n中每个数与n的最大公约数肯定是n的一个因子,所以我们只需要枚举n的每一个因子x∈[1,√n],然后看有多少个满足gcd(k,n)==x,即求满足gcd(k/x,n/x)==1中k的个数(用欧拉函数求解),则公式为:∑x*[gcd(k/x,n/x)==1]。
    AC代码(204ms):
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <map>
     5 #include <vector>
     6 #include <set>
     7 using namespace std;
     8 typedef long long LL;
     9 const int maxn = 1e6+5;
    10 LL n, ans;
    11 LL get_Euler(LL x){
    12     LL res = x;
    13     for(LL i = 2LL; i * i <= x; ++i) {
    14         if(x % i == 0) {
    15             res = res / i * (i - 1);
    16             while(x % i == 0) x /= i;
    17         }
    18     }
    19     if(x > 1LL) res = res / x * (x - 1);
    20     return res;
    21 }
    22 
    23 int main(){
    24     while(cin >> n) {
    25         ans = 0LL;
    26         for (LL i = 1LL; i * i <= n; ++i) {
    27             if(n % i == 0) {
    28                 ans += i * get_Euler(n / i);
    29                 if(i * i != n) ans += n / i * get_Euler(i); ///避免重复计数
    30             }
    31          }
    32          cout << ans << endl;
    33     }
    34     return 0;
    35 }
    AC代码二(32ms):思路和上面相同,只是将问题求解转换一下gcd(i, n) == (p_i)^j,即求Σ(p_i)^j [gcd(i/((p_i)^j)), n/((p_i)^j)==1],化简公式得 (k+1)* p^k - k*p^(k-1),再根据积性函数的性质得n的欧拉函数值为每种素因子对应的欧拉函数值φ((p_i)^a_i)相乘即可。时间复杂度是O(sqrt(n))。具体推导过程:传送门
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 using namespace std;
     5 typedef long long LL;
     6 LL n;
     7 LL solve(LL x) {
     8     LL p_i, k, ans = 1LL;
     9     for(LL i = 2LL; i * i <= x; ++i) {
    10         if(x % i == 0) {
    11             p_i = 1LL, k = 0; 
    12             while(x % i == 0) {k++, p_i *= i, x /= i;}
    13             ans *= (k + 1) * p_i - k * p_i / i; ///(k+1)*p^k - k*p^(k-1)
    14         }
    15     }
    16     if(x > 1LL) ans *= 2 * x - 1LL; 
    17     return ans;
    18 }
    19 int main() {
    20     while(cin >> n) {
    21         cout << solve(n) << endl;
    22     }
    23     return 0;
    24 }
  • 相关阅读:
    junit所需要的jar包
    【SSH学习笔记】用Struts2实现简单的用户登录
    HIbernate 一对多 多对多
    Hibernate 干货2
    Hibernate 干货
    hibernate学习笔记
    Hibernate 框架学习
    Class的isAssignableFrom方法
    dubbo源码分析1——SPI机制的概要介绍
    Dubbo简介
  • 原文地址:https://www.cnblogs.com/acgoto/p/10284800.html
Copyright © 2011-2022 走看看