zoukankan      html  css  js  c++  java
  • poj 1113 Wall(凸包)

    Description

    Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 
    Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements. 
    The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

    Input

    The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle. 
    Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

    Output

    Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

    Sample Input

    9 100
    200 400
    300 400
    300 300
    400 300
    400 400
    500 400
    500 200
    350 200
    200 200

    Sample Output

    1628

    Hint

    结果四舍五入就可以了
    解题思路:题意其实就是在一个凸包外建立一座围墙,要求围墙到凸包(城堡)的最小距离为L,求此围墙的最小总长度。公式:围墙的最小总长度=凸包周长+一个以L为半径的圆周长。证明:假设顺时针给出4个点A、B、C、D(都是凸包的顶点)组成一个凸四边形ABCD。不妨过A点作AE、AF分别垂直于AB、AD,过B点作BG、BH分别垂直于AB、BC......过A点以L为半径作一段弧连到AF,同理使GH成为一段弧。显然EG平行且等于AB......对其他顶点进行同样的操作后,可得出围墙的最小值=四边形的周长+四个顶点对应的弧长(半径都为L)之和。如图所示:
    推广到任意凸多边形,每段圆弧都是以凸包上每个对应的顶点为圆心,给定的L为半径,与相邻两条边的切线之间的一段圆弧。每段圆弧的两条半径的夹角与凸包内对应的内角互补。设凸包上有n个顶点,则组成了n个圆周角,总角度数为360°*n=2*180°*n,凸包(凸多边形)的内角和为180°*(n-2),作了2*n条垂线,那么所有垂角之和为2*n*90°=180°*n,因此所有小圆弧对应的圆心角之和为2*180°*n-180°*(n-2)-180°*n=360°(为一个以L为半径的圆)。综上所述,围墙的最小总长度=凸包周长+一个以L为半径的圆周长。
    AC代码(63ms):Graham-scan算法:时间复杂度为0(nlogn)。
     1 #include<iostream>
     2 #include<string.h>
     3 #include<algorithm>
     4 #include<cstdio>
     5 #include<cmath>
     6 using namespace std;
     7 const int maxn=1005;
     8 const double PI=acos(-1.0);
     9 struct node{int x,y;};
    10 node vex[maxn];
    11 node stackk[maxn];
    12 bool cmp1(node a,node b){
    13     if(a.y==b.y)return a.x<b.x;
    14     else return a.y<b.y;
    15 }
    16 bool cmp2(node a,node b){
    17     double A=atan2(a.y-stackk[0].y,a.x-stackk[0].x);
    18     double B=atan2(b.y-stackk[0].y,b.x-stackk[0].x);
    19     if(A!=B)return A<B;
    20     else return a.x<b.x;
    21 }
    22 int cross(node p0,node p1,node p2){
    23     return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
    24 }
    25 double dis(node a,node b){
    26     return sqrt((a.x-b.x)*(a.x-b.x)*1.0+(a.y-b.y)*(a.y-b.y));
    27 }
    28 int main(){
    29     int n,l;
    30     while(~scanf("%d%d",&n,&l)){
    31         for(int i=0;i<n;++i)//输入t个点
    32             scanf("%d%d",&vex[i].x,&vex[i].y);
    33         memset(stackk,0,sizeof(stackk));
    34         sort(vex,vex+n,cmp1);
    35         stackk[0]=vex[0];
    36         sort(vex+1,vex+n,cmp2);
    37         stackk[1]=vex[1];
    38         int top=1;
    39         for(int i=2;i<n;++i){
    40             while(top>0&&cross(stackk[top-1],stackk[top],vex[i])<=0)top--;
    41             stackk[++top]=vex[i];
    42         }
    43         double s=0;
    44         for(int i=1;i<=top;++i)
    45             s+=dis(stackk[i-1],stackk[i]);
    46         s+=dis(stackk[top],vex[0]);
    47         s+=2*PI*l;//加上圆的周长
    48         printf("%d
    ",(int)(s+0.5));//四舍五入
    49     }
    50     return 0;
    51 }

    AC代码二(32ms):Andrew算法:时间复杂度为O(nlogn),但比Graham-scan算法还快!

     1 #include<iostream>
     2 #include<string.h>
     3 #include<algorithm>
     4 #include<cstdio>
     5 #include<cmath>
     6 using namespace std;
     7 const int maxn=1005;
     8 const double PI=acos(-1.0);
     9 struct node{int x,y;}vex[maxn],stackk[maxn];
    10 bool cmp(node a,node b){//坐标排序
    11     return ((a.y<b.y)||(a.y==b.y&&a.x<b.x));
    12 }
    13 int cross(node p0,node p1,node p2){
    14     return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
    15 }
    16 double dis(node a,node b){
    17     return sqrt((a.x-b.x)*(a.x-b.x)*1.0+(a.y-b.y)*(a.y-b.y));
    18 }
    19 int main(){
    20     int n,l;
    21     while(~scanf("%d%d",&n,&l)){
    22         for(int i=0;i<n;++i)
    23             scanf("%d%d",&vex[i].x,&vex[i].y);
    24         memset(stackk,0,sizeof(stackk));
    25         sort(vex,vex+n,cmp);
    26         int top=-1;
    27         for(int i=0;i<n;++i){//构造凸包下侧
    28             while(top>0&&cross(stackk[top-1],stackk[top],vex[i])<=0)top--;
    29             stackk[++top]=vex[i];
    30         }
    31         for(int i=n-2,k=top;i>=0;--i){//构造凸包上侧
    32             while(top>k&&cross(stackk[top-1],stackk[top],vex[i])<=0)top--;
    33             stackk[++top]=vex[i];
    34         }
    35         double s=0;
    36         for(int i=1;i<=top;++i)//计算凸包周长
    37             s+=dis(stackk[i-1],stackk[i]);
    38         s+=2*PI*l;
    39         printf("%d
    ",(int)(s+0.5));
    40     }
    41     return 0;
    42 }
  • 相关阅读:
    好用的javascript eclipse插件Aptana
    汉字字符串转换成十六进制byte数组,一个汉字存到两个byte里面,大整数存到两个byte里面
    三星 平板手机电脑 Galaxytab2忘记开机密码解决方法
    java float 加减精度问题
    android 增加Addon属性支持的方法
    基于jquery的kendoUI 可以实现快速开发,节省大量web UI开发工作量
    zdz工具箱v1.5 android版本发布了,集成各种个人生活中常用的工具,方便日常使用管理
    存储联系人信息(进程com.motorola.contacts)意外停止 事件提醒eventreminder异常 处理方法
    playframework 同时运行多个项目的方法修改默认端口号
    免费的Git私有代码托管服务
  • 原文地址:https://www.cnblogs.com/acgoto/p/9547049.html
Copyright © 2011-2022 走看看