Description
给定一棵(nle 10^5)的树, 和(kle 150)
求每个点(x)的$$S(x) = sum_{y=1}^n dis(x, y) ^ k$$
Analysis
k比较小, 考虑斯特林展开
[egin{aligned}
S(x) &= sum_{y=1}^n dis(x, y)^k\
&=sum_{y=1}^n sum_{i=0}^k left{egin{matrix}k\iend{matrix}
ight} i!inom{dis(x,y)}{i}\
&=sum_{i=0}^k left{egin{matrix}k\iend{matrix}
ight} i! sum_{y=1}^n inom{dis(x,y)}{i}\
end{aligned}
]
考虑求后面的部分, 可以上下树形dp一下
记$$f[x][i] = sum_{yin sub(x)} inom{dis(x, y)}{i}$$
那么$$f[x][i] = sum_{yin son(x)} f[y][i] + [i>0]f[y][i-1]$$
即利用$$Delta inom x c = inom x {c-1}$$
这题只用暴力转移组合数一次
Code
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cctype>
#define rep(i,a,b) for (int i = (a); i <= (b); ++ i)
#define per(i,a,b) for (int i = (a); i >= (b); -- i)
#define For(i,a,b) for (int i = (a); i < (b); ++ i)
using namespace std;
const int N = 5e4 + 7;
const int M = 157;
const int Q = 10007;
inline int ri(){
int x = 0; bool f = 1; char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = 0;
for (; isdigit(c); c = getchar()) x = x*10+c-48;
return f ? x : -x;
}
inline int pls(int x, int y) {return (x + y) % Q;}
inline int mns(int x, int y) {return pls(x, Q - y);}
inline int mul(int x, int y) {return x * y % Q;}
int n, m;
int fac[M], S2[M][M];
int f[N][M], g[N][M];
int ans[N];
struct vec {
int g[N], te;
struct edge{int y, nxt;}e[N << 1];
inline void push(int x, int y) {e[++te] = (edge){y, g[x]}; g[x] = te;}
inline void push2(int x, int y) {push(x, y); push(y, x);}
inline int& operator () (int x) {return g[x];}
inline edge& operator [] (int x) {return e[x];}
}e;
void upd(int *A, int *B, int kd = 1) {
if (kd == 1) {
rep (i, 0, m) A[i] = pls(A[i], B[i]);
rep (i, 1, m) A[i] = pls(A[i], B[i-1]);
}
if (kd == -1) {
rep (i, 0, m) A[i] = mns(A[i], B[i]);
rep (i, 1, m) A[i] = mns(A[i], B[i-1]);
}
}
void UP(int x, int fa) {
int p, y;
rep (i, 0, m) ans[x] = pls(ans[x], mul(S2[m][i], pls(g[x][i], f[x][i])));
for (p=e(x); p; p=e[p].nxt)
if ((y=e[p].y) != fa) {
upd(f[x], f[y], -1);
upd(g[y], f[x]);
upd(g[y], g[x]);
UP(y, x);
upd(f[x], f[y]);
}
}
void DW(int x, int fa) {
int p, y;
for (p=e(x); p; p=e[p].nxt)
if ((y=e[p].y) != fa) {
DW(y, x);
upd(f[x], f[y]);
}
f[x][0] = pls(f[x][0], 1); // d(x, x) = 0
}
void Uncompress() {
int L, i, now, A, B, mod, tmp;
scanf("%d%d%d", &n, &m, &L);
scanf("%d%d%d%d", &now, &A, &B, &mod);
for (i = 1; i < n; i ++) {
now = (now * A + B) % mod;
tmp = (i < L) ? i : L;
e.push2(i - now % tmp, i + 1);
}
}
int main() {
#ifndef ONLINE_JUDGE
freopen("a.in", "r", stdin);
#endif
Uncompress();
int i, j;
for (fac[0] = 1, i=1; i<=m; ++i) fac[i] = mul(fac[i-1], i);
for (S2[0][0] = 1, i=1; i<=m; ++i)
for (j=1; j<=i; ++j) S2[i][j] = pls(mul(j, S2[i-1][j]), S2[i-1][j-1]);
rep (i, 0, m) rep (j, 0, i) S2[i][j] = mul(S2[i][j], fac[j]);
DW(1, 0);
UP(1, 0);
rep (i, 1, n) printf("%d
", ans[i]);
return 0;
}