题意:给你一个字符串s有一些位置被ban了,字符串t的价值是|t|*t在s中出现次数而且终点没有被ban.问你最大的价值是多少
题解:很明显t是s子串,建个sam,对于sam中每个位置,我们需要删除中点被ban的次数,只需要在sam上走一遍,到被ban的点时需要更新fa链,打个标记,根据topo序差分即可,和sz求法一样
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
//#define C 0.5772156649
//#define ls l,m,rt<<1
//#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const ull ba=233;
const db eps=1e-7;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=200000+10,maxn=100000+10,inf=0x3f3f3f3f;
char s[N],p[N];
struct SAM{
int last,cnt;
int ch[N<<1][26],fa[N<<1],l[N<<1],sz[N<<1],d[N<<1];
int a[N<<1],c[N<<1];
void ins(int c){
int p=last,np=++cnt;last=np;l[np]=l[p]+1;
for(;p&&!ch[p][c];p=fa[p])ch[p][c]=np;
if(!p)fa[np]=1;
else
{
int q=ch[p][c];
if(l[p]+1==l[q])fa[np]=q;
else
{
int nq=++cnt;l[nq]=l[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
fa[nq]=fa[q];fa[q]=fa[np]=nq;
for(;ch[p][c]==q;p=fa[p])ch[p][c]=nq;
}
}
sz[np]=1;
}
void topo()
{
for(int i=1;i<=cnt;i++)c[l[i]]++;
for(int i=1;i<=cnt;i++)c[i]+=c[i-1];
for(int i=1;i<=cnt;i++)a[c[l[i]]--]=i;
}
void build(){
last=cnt=1;
for(int i=0;s[i];i++)ins(s[i]-'a');
topo();
int now=1;
for(int i=0;p[i];i++)
{
now=ch[now][s[i]-'a'];
if(p[i]=='1')d[now]++;
}
for(int i=cnt;i;i--)sz[fa[a[i]]]+=sz[a[i]],d[fa[a[i]]]+=d[a[i]];
ll ans=0;
for(int i=2;i<=cnt;i++)ans=max(ans,1ll*l[i]*(sz[i]-d[i]));
printf("%lld
",ans);
}
}sam;
int main()
{
int n;scanf("%d%s%s",&n,s,p);
sam.build();
return 0;
}
/********************
********************/