zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 41 (Rated for Div. 2)F. k-substrings

    题意比较麻烦略
    题解:枚举前缀的中点,二分最远能扩展的地方,lcp来check,然后线段树维护每个点最远被覆盖的地方,然后查询线段树即可

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 1000000009
    #define ld long double
    //#define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    #define ull unsigned long long
    //#define base 1000000000000000000
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
    
    using namespace std;
    
    const ull ba=233;
    const db eps=1e-5;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=1000000+10,maxn=1000000+10,inf=0x3f3f3f3f;
    
    char s[N];
    int sa[N], t[N], t2[N], c[N], rk[N], height[N];
    void buildSa(int n, int m) {
        int i, j = 0, k = 0, *x = t, *y = t2;
        for(i = 0; i < m; i++) c[i] = 0;
        for(i = 0; i < n; i++) c[x[i] = s[i]]++;
        for(i = 1; i < m; i++) c[i] += c[i - 1];
        for(i = n - 1; i >= 0; i--) sa[--c[x[i]]] = i;
        for(int k = 1; k < n; k <<= 1) {
            int p = 0;
            for(i = n - k; i < n; i++) y[p++] = i;
            for(i = 0; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
            for(i = 0; i < m; i++) c[i] = 0;
            for(i = 0; i < n; i++) c[x[y[i]]]++;
            for(i = 1; i < m; i++) c[i] += c[i - 1];
            for(i = n - 1; i >= 0; i--) sa[--c[x[y[i]]]] = y[i];
            swap(x, y);
            p = 1; x[sa[0]] = 0;
            for(int i = 1; i < n; i++) {
                if(y[sa[i - 1]] == y[sa[i]] && y[sa[i - 1] + k] == y[sa[i] + k])
                    x[sa[i]] = p - 1;
                else x[sa[i]] = p++;
            }
            if(p >= n) break;
            m = p;
         }
         for(i = 1; i < n; i++) rk[sa[i]] = i;
         for(i = 0; i < n - 1; i++) {
            if(k) k--;
            j = sa[rk[i] - 1];
            while(s[i + k] == s[j + k]) k++;
            height[rk[i]] = k;
         }
    }
    int Log[N];
    struct ST {
        int dp[N][20],ty;
        ST()
        {
            for(int i = -(Log[0]=-1); i < N; i++)
                Log[i] = Log[i - 1] + ((i & (i - 1)) == 0);
        }
        void build(int n, int b[], int _ty) {
            ty = _ty;
            for(int i = 1; i <= n; i++) dp[i][0] = ty * b[i];
            for(int j = 1; j <= Log[n]; j++)
                for(int i = 1; i+(1<<j)-1 <= n; i++)
                    dp[i][j] = max(dp[i][j-1], dp[i+(1<<(j-1))][j-1]);
        }
        int query(int x, int y) {
            int k = Log[y - x + 1];
            return ty * max(dp[x][k], dp[y-(1<<k)+1][k]);
        }
    }st;
    int lcp(int x,int y)//from 0 begin
    {
        x=rk[x],y=rk[y];
        if(x>y)swap(x,y);x++;
        return st.query(x,y);
    }
    int n;
    struct sgt{
        int ma[N<<2],lazy[N<<2];
        sgt(){memset(ma,-1,sizeof ma);memset(lazy,-1,sizeof lazy);}
        void pushdown(int rt)
        {
            if(~lazy[rt])
            {
                ma[rt<<1]=max(ma[rt<<1],lazy[rt]);
                ma[rt<<1|1]=max(ma[rt<<1|1],lazy[rt]);
                lazy[rt<<1]=max(lazy[rt<<1],lazy[rt]);
                lazy[rt<<1|1]=max(lazy[rt<<1|1],lazy[rt]);
                lazy[rt]=-1;
            }
        }
        void update(int L,int R,int v,int l,int r,int rt)
        {
            if(L<=l&&r<=R)
            {
                ma[rt]=max(ma[rt],v);
                lazy[rt]=max(lazy[rt],v);
                return ;
            }
            pushdown(rt);
            int m=(l+r)>>1;
            if(L<=m)update(L,R,v,ls);
            if(m<R)update(L,R,v,rs);
            ma[rt]=max(ma[rt<<1],ma[rt<<1|1]);
        }
        int query(int pos,int l,int r,int rt)
        {
            if(l==r)
            {
                if(ma[rt]==-1)return -1;
                else return (ma[rt]-l)*2+1;
            }
            pushdown(rt);
            int m=(l+r)>>1;
            if(pos<=m)return query(pos,ls);
            else return query(pos,rs);
        }
    }sg;
    int main()
    {
        scanf("%d%s",&n,s);
        buildSa(n+1,256);
        st.build(n,height,-1);
        for(int i=0;i<n/2;i++)
        {
            if(s[i]!=s[n-i-1])continue;
            int l=0,r=i+1;
            while(l<r-1)
            {
                int m=(l+r)>>1;
                if(lcp(i-m,n-i-1-m)>=2*m+1)l=m;
                else r=m;
            }
    //        if(i==6)printf("%d 
    ",lcp(5,11));
            sg.update(i-l,i,i,0,n-1,1);
    //        printf("%d %d
    ",i-l,i);
        }
        for(int i=0;i<(n+1)/2;i++)printf("%d ",sg.query(i,0,n-1,1));puts("");
        return 0;
    }
    /********************
    
    ********************/
    
  • 相关阅读:
    简单dp总结
    一、极限总结
    最短路径之差分约束
    软工个人总结
    BETA事后总结
    BETA(7)
    BETA(6)
    BETA(5)
    Go 中的字符串相关操作
    Go 中的异常/错误处理
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/10745698.html
Copyright © 2011-2022 走看看