zoukankan      html  css  js  c++  java
  • poj3304计算几何直线与线段关系

    Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

    Input

    Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.

    Output

    For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

    Sample Input

    3
    2
    1.0 2.0 3.0 4.0
    4.0 5.0 6.0 7.0
    3
    0.0 0.0 0.0 1.0
    0.0 1.0 0.0 2.0
    1.0 1.0 2.0 1.0
    3
    0.0 0.0 0.0 1.0
    0.0 2.0 0.0 3.0
    1.0 1.0 2.0 1.0

    Sample Output

    Yes!
    Yes!
    No!
    一开始看不懂题意只好搜题意,看懂了题意之后还是花了两个多小时wa了七遍,只好看题解,可能是精度的地方写搓了>.<坑爹啊
    叉积判断线段的两端点是不是在直线的两侧
    #include<map>
    #include<set>
    #include<list>
    #include<cmath>
    #include<queue>
    #include<stack>
    #include<vector>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define pi acos(-1)
    #define ll long long
    #define mod 1000000007
    
    using namespace std;
    
    const double eps=1e-8;
    const int N=1005,maxn=100005,inf=0x3f3f3f3f;
    
    struct point{
        double x,y;
    };
    struct line{
       point a,b;
    }l[N];
    
    int n;
    double mul(point p,point u,point v)
    {
        return (u.x-v.x)*(p.y-u.y)-(u.y-v.y)*(p.x-u.x);
    }
    bool ok(point u,point v)
    {
        if(fabs(u.x-v.x)<eps&&fabs(u.y-v.y)<eps)return 0;
        for(int i=0;i<n;i++)
            if(mul(l[i].a,u,v)*mul(l[i].b,u,v)>=eps)
               return 0;
        return 1;
    }
    int main()
    {
        int t;
        cin>>t;
        while(t--){
            cin>>n;
            for(int i=0;i<n;i++)
                cin>>l[i].a.x>>l[i].a.y>>l[i].b.x>>l[i].b.y;
            if(n<=2)
            {
                cout<<"Yes!"<<endl;
                continue;
            }
            bool flag=0;
            for(int i=0;i<n&&!flag;i++)
            {
                if(ok(l[i].a,l[i].b))flag=1;
                for(int j=i+1;j<n&&!flag;j++)
                    if(ok(l[i].a,l[j].a)||ok(l[i].a,l[j].b)||ok(l[i].b,l[j].a)||ok(l[i].b,l[j].b))
                       flag=1;
            }
            if(flag)cout<<"Yes!"<<endl;
            else cout<<"No!"<<endl;
        }
        return 0;
    }
  • 相关阅读:
    80.常用的返回QuerySet对象的方法使用详解:order_by
    79.常用的返回QuerySet对象的方法使用详解: filter, exclude,annotate
    78.objects对象所属类原理分析
    69.ORM查询条件:isnull和regex的使用
    北邮 自考 互联网及其应用 考核指导
    北邮 自考 Java语言程序设计(一) 考核指导
    计算机网络自考群
    电气工程及自动化 (独立本科) 自考
    清华大学 研究生 培养方案
    windows10 M557 连接 匹配
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/6682251.html
Copyright © 2011-2022 走看看