zoukankan      html  css  js  c++  java
  • hdu1695莫比乌斯反演模板题

    hdu1695

    求1<=i<=n&&1<=j<=m,gcd(i,j)=k的(i,j)的对数

    最后的结果f(k)=Σ(1<=x<=n/k)mu[x]*(n/(x*k))*(m/(x*k))

    遍历的复杂度是O(n/k),按理来说是会t的,但是这题过了,更好的办法是用分块降低到O(sqrt(n/k))

    详细介绍请看:链接

    这题要(i,j)和(j,i)算重复的,所以要减去

    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    //#pragma GCC optimize("unroll-loops")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define mod 1000000007
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pil pair<int,ll>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    
    using namespace std;
    
    const double g=10.0,eps=1e-12;
    const int N=100000+10,maxn=400000+10,inf=0x3f3f3f3f;
    
    int mu[N],prime[N],sum[N];
    bool mark[N];
    void init()
    {
        mu[1]=1;
        int cnt=0;
        for(int i=2;i<N;i++)
        {
            if(!mark[i])prime[++cnt]=i,mu[i]=-1;
            for(int j=1;j<=cnt;j++)
            {
                int t=i*prime[j];
                if(t>N)break;
                mark[t]=1;
                if(i%prime[j]==0){mu[t]=0;break;}
                else mu[t]=-mu[i];
            }
        }
        for(int i=1;i<N;i++)sum[i]=sum[i-1]+mu[i];
    }
    int main()
    {
        init();
        int t,cnt=0;
        scanf("%d",&t);
        while(t--)
        {
            ll a,b,c,d,k;
            scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
            if(!k)
            {
                printf("Case %d: 0
    ",++cnt);
                continue;
            }
            if(b>d)swap(b,d);
            b/=k,d/=k;
            ll ans=0,ans1=0;
            for(ll i=1,last=1;i<=b;i=last+1)
            {
                last=min(b/(b/i),d/(d/i));
                ans+=(ll)(sum[last]-sum[i-1])*(b/i)*(d/i);
            }
            for(ll i=1,last=1;i<=b;i=last+1)
            {
                last=b/(b/i);
                ans1+=(ll)(sum[last]-sum[i-1])*(b/i)*(b/i);
            }
            printf("Case %d: %lld
    ",++cnt,ans-ans1/2);
        }
        return 0;
    }
    /********************
    
    ********************/
    View Code
  • 相关阅读:
    进程、线程、轻量级进程、协程与 go 的 goroutine
    Base: 一种 Acid 的替代方案
    单点登录 SSO(Single Sign-On)的实现原理
    大型网站之分布式会话管理
    PayPal 高级工程总监:读完这 100 篇文献,就能成大数据高手
    主流编程语言的 33 款开源爬虫
    docker基础命令
    mysql实现首字母从A-Z排序
    solr+zookeeper集群配置
    Lucene与Solr基础
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/8439155.html
Copyright © 2011-2022 走看看