zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 38

    http://codeforces.com/contest/938

    A:sb题

    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    //#pragma GCC optimize("unroll-loops")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define mod 1000000007
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pil pair<int,ll>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    
    using namespace std;
    
    const double g=10.0,eps=1e-12;
    const int N=100000+10,maxn=2000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;
    
    bool ok(char s)
    {
        if(s=='a'||s=='e'||s=='i'||s=='o'||s=='u'||s=='y')return 1;
        return 0;
    }
    int main()
    {
        fio;
        string s;
        int n;
        cin>>n>>s;
        while(1)
        {
    //        cout<<s<<endl;
            bool f=1;
            for(int i=1;i<s.size();i++)
            {
                if(ok(s[i])&&ok(s[i-1]))
                {
                    f=0;
                    s=s.substr(0,i)+s.substr(i+1,s.size());
                    break;
                }
            }
            if(f)break;
        }
        cout<<s<<"
    ";
        return 0;
    }
    /********************
    
    ********************/
    A

    B:sb题

    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    //#pragma GCC optimize("unroll-loops")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define mod 1000000007
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pil pair<int,ll>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    
    using namespace std;
    
    const double g=10.0,eps=1e-12;
    const int N=100000+10,maxn=2000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;
    
    int a[N];
    int main()
    {
        int n,ans=-1;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            int x;
            scanf("%d",&x);
            ans=max(ans,min(x-1,1000000-x));
        }
        printf("%d
    ",ans);
        return 0;
    }
    /********************
    
    ********************/
    B c++
    import java.io.OutputStream;
    import java.io.IOException;
    import java.io.InputStream;
    import java.io.PrintWriter;
    import java.util.Arrays;
    import java.util.StringTokenizer;
    import java.io.IOException;
    import java.io.BufferedReader;
    import java.io.InputStreamReader;
    import java.io.InputStream;
    import java.math.*;
    
    public class Main {
        public static void main(String[] args) {
            InputStream inputStream = System.in;
            OutputStream outputStream = System.out;
            InputReader in = new InputReader(inputStream);
            PrintWriter out = new PrintWriter(outputStream);
            TaskD solver = new TaskD();
            solver.solve(1, in, out);
            out.close();
        }
    
        static class TaskD {
            static final int MAX_COORD = (int) 1e5 + 10;
            static final int INF = (int) 1e9;
    
            public void solve(int testNumber, InputReader in, PrintWriter out) {
                int n=in.nextInt(),ans=-1;
                for(int i=1;i<=n;i++)
                {
                    int x=in.nextInt();
                    ans=Math.max(ans,Math.min(x-1,1000000-x));
                }
                out.println(ans);
            }
    
        }
    
        static class InputReader {
            public BufferedReader reader;
            public StringTokenizer tokenizer;
    
            public InputReader(InputStream stream) {
                reader = new BufferedReader(new InputStreamReader(stream), 32768);
                tokenizer = null;
            }
    
            public String next() {
                while (tokenizer == null || !tokenizer.hasMoreTokens()) {
                    try {
                        tokenizer = new StringTokenizer(reader.readLine());
                    } catch (IOException e) {
                        throw new RuntimeException(e);
                    }
                }
                return tokenizer.nextToken();
            }
    
            public int nextInt() {
                return Integer.parseInt(next());
            }
    
        }
    }
    B java
    n=int(input())
    x=input().split(' ')
    ans=-1
    for i in x:
        ans=max(ans,min(int(i)-1,1000000-int(i)))
    print(ans)
    B python

    C:m-free代表所有n*n的m*m子矩阵至少含一个0,给你x,要求找一组n,m中 的1的个数最多且为x

    解法:推公式,nm中最多1为n*n-(n/m)*(n/m),预处理平方,然后二分求n,m

    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    //#pragma GCC optimize("unroll-loops")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define mod 1000000007
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pil pair<int,ll>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    
    using namespace std;
    
    const double g=10.0,eps=1e-12;
    const int N=100000+10,maxn=2000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;
    
    map<ll,ll>m;
    void init()
    {
        for(ll i=1;i<=40000;i++)
            m[i*i]=i;
    }
    int main()
    {
        init();
        int t;
        scanf("%d",&t);
        while(t--)
        {
            ll x,f=0;
            scanf("%lld",&x);
            for(ll i=1;i<=40000;i++)
            {
                ll te=m[x+i*i];
                if(te)
                {
                   ll ans=te/i;
                   if(te*te-(int)(te/ans)*(te/ans)==x)
                   {
                       f=1;
                       printf("%lld %lld
    ",te,ans);
                       break;
                   }
                }
            }
            if(!f)puts("-1");
        }
        return 0;
    }
    /********************
    
    ********************/
    C

    D:找每个点到另一个点的最小价值,价值是边权值和*2加所到点的权值;

    解法:加一个超级源,该点到每一个点的权值为点的权值,然后该点到每一个最短路就是每个点的答案了,(会卡spfa)

    ps:再也不写spfa了,dij很好写啊,spfa复杂度就是个玄学

    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    //#pragma GCC optimize("unroll-loops")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define mod 1000000007
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pil pair<int,ll>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    
    using namespace std;
    
    const double g=10.0,eps=1e-12;
    const int N=200000+10,maxn=1200000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;
    
    struct edge{
        int to,Next;
        ll c;
    }e[maxn];
    int cnt,head[N];
    void init()
    {
        cnt=0;
        memset(head,-1,sizeof head);
    }
    void add(int u,int v,ll w)
    {
        e[cnt].to=v;
        e[cnt].c=w;
        e[cnt].Next=head[u];
        head[u]=cnt++;
    }
    priority_queue<pii,vector<pii>,greater<pii> >q;
    ll dis[N];
    void dij(int s)
    {
        for(int i=0;i<N;i++)
            dis[i]=1e18;
        dis[s]=0;
        q.push(mp(0,s));
        while(!q.empty())
        {
            pii u=q.top();
            q.pop();
            int x=u.se;
            if(dis[x]<u.fi)continue;
            for(int i=head[x];~i;i=e[i].Next)
            {
                int To=e[i].to;
                if(dis[To]>dis[x]+e[i].c)
                {
                    dis[To]=dis[x]+e[i].c;
                    q.push({dis[To],To});
                }
            }
        }
    }
    int main()
    {
        int n,m;
        scanf("%d%d",&n,&m);
        init();
        for(int i=0;i<m;i++)
        {
            int a,b;
            ll w;
            scanf("%d%d%lld",&a,&b,&w);
            add(a,b,2*w);
            add(b,a,2*w);
        }
        for(int i=1;i<=n;i++)
        {
            ll w;
            scanf("%lld",&w);
            add(i,n+1,w);
            add(n+1,i,w);
        }
        dij(n+1);
        for(int i=1;i<=n;i++)
            printf("%lld ",dis[i]);
        puts("");
        return 0;
    }
    /********************
    
    ********************/
    D

    E:给你n个数求每个排列的价值总和,对于一个排列来说价值就是从1到n,依次找比上一个访问过的点权值大的那个点的价值加起来

    解法:明显的排列组合,我们分别算每个数的贡献,假设现在有一个数x,比它小的数有a个,比它大的数有b个,那么x前面没有比x大 的排列情况一共有多少个呢?

    答案是b!*(b+1)*...*(b+a+1),因为先把b个数全排列是b!,然后用插空法,依次插入比x小的数空的个数依次是b+1...b+a+1

    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    //#pragma GCC optimize("unroll-loops")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define mod 1000000007
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pil pair<int,ll>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    
    using namespace std;
    
    const double g=10.0,eps=1e-12;
    const int N=2000000+10,maxn=1000000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;
    
    ll f[N],a[maxn];
    void init()
    {
        f[0]=1;
        for(ll i=1;i<N;i++)
            f[i]=f[i-1]*i%mod;
    }
    ll quick(ll a,ll b)
    {
        ll ans=1;
        while(b)
        {
            if(b&1)ans=ans*a%mod;
            a=a*a%mod;
            b>>=1;
        }
        return ans;
    }
    int main()
    {
        init();
        int n;
        scanf("%d",&n);
        for(int i=0;i<n;i++)scanf("%lld",&a[i]);
        sort(a,a+n);
        ll ans=0;
        for(int i=0;i<n;i++)
        {
            ll pre=lower_bound(a,a+n,a[i])-a;
            ll suf=n-pre-1;
            if(a[i]==a[n-1])continue;
    //        printf("%lld %lld %lld
    ",pre,suf,solve(pre,suf));
            ans=(ans+f[n]*quick(suf+1,mod-2)%mod*a[i])%mod;
        }
        printf("%lld
    ",ans);
        return 0;
    }
    /********************
    
    ********************/
    E

    F:有一个字符串,要求删除logn向下取整次,每次删除长度为2*(i-1)的字符串,求删除后字典序最小的字符串

    解法:可以考虑,用string的二维dp,dp[i][j]代表前i为,删除为j状态的最小字符串,枚举i复杂度O(n),枚举状态复杂度O(nlogn),字符串操作复杂度O(n),然后复杂度是O(n^3logn),明显会爆炸,所以改变一下,我们只用dp[i][j]来表示当前位置是不是最小的情况,只用开bool型即可,每次更新时,贪心的只从最小情况来转移,然后求出下一层的最小情况,复杂度就降到了O(n^2logn),还可以用滚动数组,只开成dp[2][n]来降低空间复杂度

    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    //#pragma GCC optimize("unroll-loops")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define mod 1000000007
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pil pair<int,ll>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    
    using namespace std;
    
    const double g=10.0,eps=1e-12;
    const int N=5000+10,maxn=1200000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;
    
    bool dp[2][N];
    string s;
    int main()
    {
        fio;
        cin>>s;
        int n=s.size(),k=0;
        while((1<<(k+1)<=n))k++;
        int pos=n-(1<<k)+1,now=0,pre=1;
        dp[now][0]=1;
        for(int i=0;i<pos;i++)
        {
            for(int j=0;j<(1<<k);j++)
            {
                if(!dp[now][j])continue;
                for(int u=0;u<k;u++)
                    if(!((j>>u)&1))
                        dp[now][j^(1<<u)]=1;
            }
            char mi='z';
            for(int j=0;j<(1<<k);j++)
                if(dp[now][j])
                    mi=min(mi,s[i+j]);
            putchar(mi);
            memset(dp[pre],0,sizeof dp[pre]);
            for(int j=0;j<(1<<k);j++)
                if(dp[now][j]&&s[i+j]==mi)
                    dp[pre][j]=1;
            swap(now,pre);
        }
        return 0;
    }
    /********************
    
    ********************/
    F

    G:待补

  • 相关阅读:
    5 粘包现象与解决方案
    4 Socket代码实例
    协程与多路io复用epool关系
    基于selector的socket并发
    基于select类型多路IO复用,实现简单socket并发
    协程实现多并发socket,跟NGINX一样
    利用协程实现简单爬虫
    协程
    进程池pool
    进程锁 Lock
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/8574430.html
Copyright © 2011-2022 走看看