zoukankan      html  css  js  c++  java
  • 牛客网暑期ACM多校训练营(第三场)DEncrypted String Matching fft

    题意:给你一个解密后的字符串,给你加密方式,加密过程可能出错,字符可能加减1,然后给你一个字符串,要求匹配个数(其实我也不太懂具体怎么加密解密,反正你把给你的前两个字符串用第三个加密一下,然后搞可以有一个ascaii码误差的字符串匹配即可,)
    题解:fft加速字符串匹配
    假设上面的串是s,长度是m,下面的串是p,长度是n,(详细讲解请看上一篇fft关于字符串匹配的博客)现在匹配方程变成(sum_{j=1}^m(p_{i+j}-s_{n-j})^2*((p_{i+j}-s{n-j})^2-1)=0),,把它拆开就变成了(sum_{j=1}^m(p_{i+j}^4-p_{i+j}^2+s_{n-j}^4-s_{n-j}^2+2*p_{i+j}*s_{n-j}+6*p_{i+j}^2*s_{n-j}^2-4*p_{i+j}^3*s_{n-j}-4*p_{i+j}*s_{n-j}^3)=0),然后对后四项进行fft算多项式,前四项颗直接前缀和求出,最后加起来看是不是0即可判断是否匹配

    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    //#pragma GCC optimize("unroll-loops")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 1000000007
    #define ld long double
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    //#define cd complex<double>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    template<typename T>
    inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>
    inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
    
    using namespace std;
    
    const double eps=1e-8;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=250000+10,maxn=50000+10,inf=0x3f3f3f3f;
    
    struct cd{
        db x,y;
        cd(db _x=0.0,db _y=0.0):x(_x),y(_y){}
        cd operator +(const cd &b)const{
            return cd(x+b.x,y+b.y);
        }
        cd operator -(const cd &b)const{
            return cd(x-b.x,y-b.y);
        }
        cd operator *(const cd &b)const{
            return cd(x*b.x - y*b.y,x*b.y + y*b.x);
        }
        cd operator /(const db &b)const{
            return cd(x/b,y/b);
        }
    }a[N<<3],b[N<<3],c[N<<3],d[N<<3],e[N<<3],f[N<<3],g[N<<3];
    int rev[N<<3];
    void getrev(int bit)
    {
        for(int i=0;i<(1<<bit);i++)
            rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));
    }
    void fft(cd *a,int n,int dft)
    {
        for(int i=0;i<n;i++)
            if(i<rev[i])
                swap(a[i],a[rev[i]]);
        for(int step=1;step<n;step<<=1)
        {
            cd wn(cos(dft*pi/step),sin(dft*pi/step));
            for(int j=0;j<n;j+=step<<1)
            {
                cd wnk(1,0);
                for(int k=j;k<j+step;k++)
                {
                    cd x=a[k];
                    cd y=wnk*a[k+step];
                    a[k]=x+y;a[k+step]=x-y;
                    wnk=wnk*wn;
                }
            }
        }
        if(dft==-1)for(int i=0;i<n;i++)a[i]=a[i]/n;
    }
    char s[N],p[N],ch[N];
    ll sums[N],sump[N];
    int main()
    {
        scanf("%s%s%s",s+1,p+1,ch+1);
        int n=strlen(s+1),m=strlen(p+1);
        int sz=0;
        while((1<<sz)<m)sz++;
        sz++,getrev(sz);
        for(int i=0;i<=(1<<sz);i++)
            a[i]=b[i]=c[i]=d[i]=e[i]=f[i]=0;
        for(int i=n,te;i>=1;i--)
        {
            s[i]=ch[s[i]-'a'+1];
            te=s[i]-'a'+1;
            a[m-i]=-4*te*te*te,b[m-i]=6*te*te,c[m-i]=-4*te,d[m-i]=2*te;
            sums[i]=sums[i+1]+1ll*te*te*te*te-1ll*te*te;
        }
        for(int i=1,te;i<=m;i++)
        {
            p[i]=ch[p[i]-'a'+1];
            te=p[i]-'a'+1;
            e[i]=te*te*te,f[i]=te*te,g[i]=te;
            sump[i]=sump[i-1]+1ll*te*te*te*te-1ll*te*te;
        }
        fft(a,(1<<sz),1),fft(b,(1<<sz),1),fft(c,(1<<sz),1);
        fft(d,(1<<sz),1),fft(e,(1<<sz),1),fft(f,(1<<sz),1);fft(g,(1<<sz),1);
        for(int i=0;i<=(1<<sz);i++)
            d[i]=a[i]*g[i]+b[i]*f[i]+c[i]*e[i]+d[i]*g[i];
        fft(d,(1<<sz),-1);
    //    for(int i=0;i<=m-n;i++)
    //        printf("%d ",(int)((d[m+i].x+0.5)/(1<<sz)));
    //    puts("");
        vi ans;
        for(int i=0;i<=m-n;i++)
            if((int)(d[m+i].x+sump[i+n]-sump[i]+sums[1])==0)
                ans.pb(i+1);
        printf("%d
    ",ans.size());
        for(int i=0;i<ans.size();i++)
            printf("%d ",ans[i]);
        puts("");
        return 0;
    }
    /********************
    
    ********************/
    
  • 相关阅读:
    辞职信(转贴)
    去掉控件上显示聚焦框
    静态构造函数
    用Excel 公式求 金额的差额
    2020/2/6学习总结
    2020/2/3学习总结
    2020/2/7学习总结
    2020/1/31学习总结
    2020/2/5学习总结
    2020/2/4学习总结
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/9379634.html
Copyright © 2011-2022 走看看