zoukankan      html  css  js  c++  java
  • bzoj4804: 欧拉心算 欧拉筛

    题意:求(sum_{i=1}^nsum_{j=1}^nphi(gcd(i,j)))
    题解:(sum_{i==1}^nsum_{j=1}^nsum_{d=1}^n[gcd(i,j)==d]*phi(d))
    (=sum_{d=1}^nphi(d)*sum_{i=1}^nsum_{j=1}^n[gcd(i,j)==d])
    (=sum_{d=1}^nphi(d)*sum_{i=1}^{lfloor frac{n}{d} floor}[gcd(i,j)==1])
    (=sum_{d=1}^nphi(d)*(2*sum_{i=1}^{lfloor frac{n}{d} floor}phi({lfloor frac{n}{d} floor})-1))
    (=sum_{d=1}^nphi(d)*sum(lfloor frac{n}{d} floor)-sum(n))
    求个前缀和分块搞一搞就好了

    /**************************************************************
        Problem: 4804
        User: walfy
        Language: C++
        Result: Accepted
        Time:4108 ms
        Memory:167304 kb
    ****************************************************************/
     
    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 998244353
    #define ld long double
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    //#define cd complex<double>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    template<typename T>
    inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>
    inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
     
    using namespace std;
     
    const double eps=1e-8;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=10000000+10,maxn=400000+10,inf=0x3f3f3f3f;
     
    int prime[N],cnt,phi[N];
    bool mark[N];
    ll sum[N];
    void init()
    {
        phi[1]=1;
        for(int i=2;i<N;i++)
        {
            if(!mark[i]){prime[++cnt]=i,phi[i]=i-1;}
            for(int j=1;j<=cnt&&i*prime[j]<N;j++)
            {
                mark[i*prime[j]]=1;
                phi[i*prime[j]]=phi[i]*phi[prime[j]];
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
            }
        }
        for(int i=1;i<N;i++)sum[i]=sum[i-1]+phi[i];
    }
    int main()
    {
        init();
        int T;scanf("%d",&T);
        while(T--)
        {
            ll n,ans=0;
            scanf("%lld",&n);
            for(ll i=1,j;i<=n;i=j+1)
            {
                j=n/(n/i);
                ans+=(sum[j]-sum[i-1])*sum[n/i];
            }
            printf("%lld
    ",2*ans-sum[n]);
        }
        return 0;
    }
    /********************
     
    ********************/
    
  • 相关阅读:
    Delphi中多线程同步过程Synchronize的一些说明
    property中的read,write是什么意思?
    如何用delphi读写csv文件
    将DBGrid中的数据导入Excel表格中
    如何获取combobox显示的值
    WaitForSingleObject 的返回值
    关于GetOverlappedResult函数的一些知识
    串口编程:COMSTAT 结构
    windows 官方镜像下载地址
    ffmpeg 命令行改变视频分辨率
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/9542368.html
Copyright © 2011-2022 走看看