题意:给定函数(f(x)),有(n^2-3*n+2=sum_{d|n}f(d)),求(sum_{i=1}^nf(i))
题解:很显然的杜教筛,假设(g(n)=n^2-3*n+2),那么有(g=f*I),由莫比乌斯反演,(f=g*mu),可以O(nlogn)预处理到1e6,剩余部分杜教筛
我们先观察杜教筛的推导过程,假设要求(s(n)=sum_{i=1}^nf(i)),
(sum_{i=1}^ng*f=sum_{i=1}^nsum_{d|i}g(d)f(frac{i}{d})=sum_{d=1}^ng(d)sum_{i=1}^{lfloor frac{n}{d}
floor}f(i)=sum_{d=1}^ng(d)S(lfloor frac{n}{d}
floor))
(S(n)=sum_{i=1}^ng*f-sum_{i=1}^ng(d)S(lfloor frac{n}{d}
floor))
我们考虑s就是我们要求的答案,g是常函数,那么I*f就是g,所以前半部分即(sum_{i=1}^ng(i))
分块处理后半部分,复杂度(O(n^{frac{2}{3}))
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=1000000+10,maxn=3000000+10,inf=0x3f3f3f3f;
int prime[N],cnt,mu[N];
bool mark[N];
ll f[N];
map<ll,ll>ff;
map<ll,ll>::iterator it1;
ll inv3=qp(3,mod-2);
void init()
{
mu[1]=1;
for(int i=2;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*prime[j]<N;j++)
{
mark[i*prime[j]]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<N;i++)
for(int j=i;j<N;j+=i)
{
ll te=1ll*(j/i-2)*(j/i-1)*mu[i];
te=(te%mod+mod)%mod;
add(f[j],te);
}
// printf("%lld
",f[1000000]);
for(int i=1;i<N;i++)add(f[i],f[i-1]);
}
ll getf(ll n)
{
if(n<N)return f[n];
if((it1=ff.find(n))!=ff.end())return it1->se;
ll ans=n*(n+1)%mod*(n-4)%mod*inv3%mod+2ll*n%mod;
ans=(ans%mod+mod)%mod;
for(ll i=2,j;i<=n;i=j+1)
{
j=n/(n/i);
sub(ans,1ll*(j-i+1)*getf(n/i)%mod);
}
return ff[n]=ans;
}
int main()
{
init();
int T;scanf("%d",&T);
while(T--)
{
ll n;scanf("%lld",&n);
printf("%lld
",getf(n));
}
return 0;
}
/********************
********************/