zoukankan      html  css  js  c++  java
  • hdu5608杜教筛

    题意:给定函数(f(x)),有(n^2-3*n+2=sum_{d|n}f(d)),求(sum_{i=1}^nf(i))
    题解:很显然的杜教筛,假设(g(n)=n^2-3*n+2),那么有(g=f*I),由莫比乌斯反演,(f=g*mu),可以O(nlogn)预处理到1e6,剩余部分杜教筛
    我们先观察杜教筛的推导过程,假设要求(s(n)=sum_{i=1}^nf(i)),
    (sum_{i=1}^ng*f=sum_{i=1}^nsum_{d|i}g(d)f(frac{i}{d})=sum_{d=1}^ng(d)sum_{i=1}^{lfloor frac{n}{d} floor}f(i)=sum_{d=1}^ng(d)S(lfloor frac{n}{d} floor))
    (S(n)=sum_{i=1}^ng*f-sum_{i=1}^ng(d)S(lfloor frac{n}{d} floor))
    我们考虑s就是我们要求的答案,g是常函数,那么I*f就是g,所以前半部分即(sum_{i=1}^ng(i))
    分块处理后半部分,复杂度(O(n^{frac{2}{3}))

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 1000000007
    #define ld long double
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    //#define cd complex<double>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    template<typename T>
    inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>
    inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
    
    using namespace std;
    
    const double eps=1e-8;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=1000000+10,maxn=3000000+10,inf=0x3f3f3f3f;
    
    int prime[N],cnt,mu[N];
    bool mark[N];
    ll f[N];
    map<ll,ll>ff;
    map<ll,ll>::iterator it1;
    ll inv3=qp(3,mod-2);
    void init()
    {
        mu[1]=1;
        for(int i=2;i<N;i++)
        {
            if(!mark[i])prime[++cnt]=i,mu[i]=-1;
            for(int j=1;j<=cnt&&i*prime[j]<N;j++)
            {
                mark[i*prime[j]]=1;
                if(i%prime[j]==0)
                {
                    mu[i*prime[j]]=0;
                    break;
                }
                mu[i*prime[j]]=-mu[i];
            }
        }
        for(int i=1;i<N;i++)
            for(int j=i;j<N;j+=i)
            {
                ll te=1ll*(j/i-2)*(j/i-1)*mu[i];
                te=(te%mod+mod)%mod;
                add(f[j],te);
            }
    //    printf("%lld
    ",f[1000000]);
        for(int i=1;i<N;i++)add(f[i],f[i-1]);
    }
    ll getf(ll n)
    {
        if(n<N)return f[n];
        if((it1=ff.find(n))!=ff.end())return it1->se;
        ll ans=n*(n+1)%mod*(n-4)%mod*inv3%mod+2ll*n%mod;
        ans=(ans%mod+mod)%mod;
        for(ll i=2,j;i<=n;i=j+1)
        {
            j=n/(n/i);
            sub(ans,1ll*(j-i+1)*getf(n/i)%mod);
        }
        return ff[n]=ans;
    }
    int main()
    {
        init();
        int T;scanf("%d",&T);
        while(T--)
        {
            ll n;scanf("%lld",&n);
            printf("%lld
    ",getf(n));
        }
        return 0;
    }
    /********************
    
    ********************/
    
  • 相关阅读:
    Java Web系统经常使用的第三方接口
    ExtJS笔记--applyTo和renderTo的差别
    ORACLE触发器具体解释
    java多线程样例
    RapeLay(电车之狼R)的结局介绍 (隐藏结局攻略)
    排序——选择排序
    常见hash算法的原理
    jdk和jre是什么?都有什么用?(转帖)
    Ubuntu下deb包的安装方法
    參加《全流程全要素的研发项目管理》培训记录与心得
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/9739793.html
Copyright © 2011-2022 走看看