zoukankan      html  css  js  c++  java
  • 51nod1238 最小公倍数之和 V3

    题意:求(sum_{i=1}^nsum_{j=1}^nfrac{i*j}{gcd(i,j)})
    题解:先枚举gcd,(sum_{d=1}^ndsum_{i=1}^{lfloor frac{n}{d} floor}sum_{j=1}^{lfloor frac{n}{d} floor}i*j[(i,j)==1])
    (=sum_{d=1}^nd2*sum_{i=1}^{lfloor frac{n}{d} floor}sum_{j=1}^{i}i*j[(i,j)==1]-1)
    (=sum_{d=1}^nd2*sum_{i=1}^{lfloor frac{n}{d} floor}isum_{j=1}^{i}j[(i,j)==1]-1)
    (=sum_{d=1}^nd2*sum_{i=1}^{lfloor frac{n}{d} floor}i*frac{i*phi(i)+[i==1]}{2}-1)
    (=sum_{d=1}^ndsum_{i=1}^{lfloor frac{n}{d} floor}i^2*phi(i))
    假设(f(i)=i^2*phi(i),S(n)=sum_{i=1}^nf(i))
    由杜教筛(g(1)S(n)=sum_{i=1}^ng*f-sum_{d=2}g(d)S(lfloor frac{n}{d} floor))
    考虑(g(n)=n^2),g和f狄利克雷卷积(=sum_{d|n}d^2phi(d){frac{n}{d}}^2=n^3)
    那么(S(n)=sum_{i=1}^n n^3-sum_{d=2}d^2S(lfloor frac{n}{d} floor))

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 1000000007
    #define ld long double
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    //#define cd complex<double>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    template<typename T>
    inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>
    inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
    
    using namespace std;
    
    const double eps=1e-8;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=5000000+10,maxn=3000000+10,inf=0x3f3f3f3f;
    
    int prime[N],cnt,phi[N];
    bool mark[N];
    ll f[N],inv2=qp(2,mod-2),inv6=qp(6,mod-2);
    map<ll,ll>phii;
    void init()
    {
        phi[1]=1;
        for(int i=2;i<N;i++)
        {
            if(!mark[i])prime[++cnt]=i,phi[i]=i-1;
            for(int j=1;j<=cnt&&i*prime[j]<N;j++)
            {
                mark[i*prime[j]]=1;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
        for(int i=1;i<N;i++)
        {
            f[i]=1ll*i*i%mod*phi[i]%mod;
            add(f[i],f[i-1]);
        }
    }
    ll getf(ll n)
    {
        if(n<N)return f[n];
        if(phii.find(n)!=phii.end())return phii[n];
        ll ans=n%mod*((n+1)%mod)%mod*inv2%mod;ans=ans*ans%mod;
        for(ll i=2,j;i<=n;i=j+1)
        {
            j=n/(n/i);
            ll tj=j%mod,ti=i%mod;
            ll te=tj*(tj+1)%mod*(2ll*tj+1)%mod*inv6%mod-(ti-1)*ti%mod*(2ll*ti-1)%mod*inv6%mod;
            te=(te%mod+mod)%mod;
            sub(ans,te*getf(n/i)%mod);
        }
        return phii[n]=ans;
    }
    int main()
    {
        init();
        ll n,ans=0;scanf("%lld",&n);
        for(ll i=1,j;i<=n;i=j+1)
        {
            j=n/(n/i);
            add(ans,(j-i+1)%mod*((i+j)%mod)%mod*inv2%mod*getf(n/i)%mod);
        }
        printf("%lld
    ",ans);
        return 0;
    }
    /********************
    
    ********************/
    
  • 相关阅读:
    PHP 数组和字符串转换(超详细
    获取客户端ip、地理信息、浏览器、真实IP的php类库
    将博客搬至CSDN
    1.0.1unity服务器学习经验
    音游制作插件Koreographer-第0篇 简介
    Unity UIWidgets
    Unity UIWidgets
    Unity UIWidgets
    Lua中ipairs和pairs的区别详解
    ubuntu下面配置apache
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/9742073.html
Copyright © 2011-2022 走看看