zoukankan      html  css  js  c++  java
  • HDu4794 斐波那契循环节

    题意:Arnold变换把矩阵(x,y)变成((x+y)%n,(x+2*y)%n),问最小循环节
    题解:仔细算前几项能看出是斐波那契数论modn,然后套个斐波那契循环节板子即可

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll unsigned long long
    #define vi vector<int>
    #define mod 1000000007
    #define ld long double
    #define C 0.5772156649
    //#define ls l,m,rt<<1
    //#define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    //#define cd complex<double>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    template<typename T>
    inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>
    inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
    
    using namespace std;
    
    const double eps=1e-8;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=100000+10,maxn=300000+10,inf=0x3f3f3f3f;
    
    struct Node{
        ll row,col;
        ll a[3][3];
    };
    Node mul(Node x,Node y,ll c)
    {
        Node ans;
        ans.row=x.row,ans.col=y.col;
        memset(ans.a,0,sizeof ans.a);
        for(int i=0;i<x.row;i++)
            for(int j=0;j<x.col;j++)
               for(int k=0;k<y.col;k++)
                   ans.a[i][k]=(ans.a[i][k]+x.a[i][j]*y.a[j][k]+c)%c;
        return ans;
    }
    Node quick_mul(Node x,ll n,ll c)
    {
        Node ans;
        ans.row=x.row,ans.col=x.col;
        memset(ans.a,0,sizeof ans.a);
        for(int i=0;i<ans.col;i++)ans.a[i][i]=1;
        while(n){
            if(n&1)ans=mul(ans,x,c);
            x=mul(x,x,c);
            n>>=1;
        }
        return ans;
    }
    bool ok(ll x,ll n)
    {
        Node A;A.row=A.col=2;
        A.a[0][0]=A.a[0][1]=A.a[1][0]=1;A.a[1][1]=0;
        A=quick_mul(A,x-1,n);
        return ((A.a[0][0]+A.a[0][1])%n==1)&&((A.a[1][0]+A.a[1][1])%n==0);
    }
    bool erci(ll x,ll p){return qp(x,(p-1)>>1,p)==1;}
    ll n,fac[N],cnt;
    vector<pli>v;
    ll fibmod(ll n)
    {
        v.clear();
        for(ll i=2;i*i<=n;i++)
        {
            if(n%i==0)
            {
                int co=0;
                while(n%i==0)n/=i,co++;
                v.pb(mp(i,co));
            }
        }
        if(n!=1)v.pb(mp(n,1));
        ll ans=1;
        for(int i=0;i<v.size();i++)
        {
            ll p=v[i].fi,m=v[i].se;
            ll te,gp,x;
            if(p==2)gp=3;
            else if(p==3)gp=8;
            else if(p==5)gp=20;
            else
            {
                if(erci(5,p))te=p-1;
                else te=2*(p+1);
                cnt=0;
                for(ll j=1;j*j<=te;j++)
                {
                    if(te%j==0)
                    {
                        fac[++cnt]=j;
                        if(j*j!=te)fac[++cnt]=te/j;
                    }
                }
                sort(fac+1,fac+1+cnt);
                for(int j=1;j<=cnt;j++)
                {
                    if(ok(fac[j],p))
                    {
                        gp=fac[j];
                        break;
                    }
                }
            }
            x=gp*(ll)pow(p,m-1);
            ans=ans/gcd(ans,x)*x;
        }
        return ans;
    }
    int main()
    {
        while(~scanf("%llu",&n))
        {
            if(n==2)puts("3");
            else printf("%llu
    ",fibmod(n)>>1ll);
        }
        return 0;
    }
    /********************
    
    ********************/
    
  • 相关阅读:
    数据库服务器计数器
    性能测试之操作系统计数器分析方法
    性能测试之Windows常见性能计数器
    企业级 SpringCloud 教程 (三) 服务消费者(Feign)
    企业级 SpringCloud 教程 (二) 服务消费者(rest+ribbon)
    企业级 SpringCloud 教程 (一) 服务的注册与发现(Eureka)
    Spring Cloud构建微服务架构:服务容错保护(Hystrix断路器)
    Spring Cloud构建微服务架构:服务容错保护(Hystrix服务降级)
    Spring Cloud构建微服务架构:服务容错保护(Hystrix依赖隔离)
    Spring Cloud构建微服务架构:分布式配置中心
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/9759709.html
Copyright © 2011-2022 走看看