zoukankan      html  css  js  c++  java
  • ZOJ 1733 Common Subsequence(LCS)

    Common Subsequence

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.


    Sample Input

    abcfbc abfcab
    programming contest 
    abcd mnp


    Sample Output

    4
    2
    0

    分析:最长公共子序列

    代码如下:

     1 # include<stdio.h>
     2 # include<string.h>
     3 # define MAX 1005
     4 char s1[MAX],s2[MAX];
     5 int dp[MAX][MAX];
     6 int len1,len2;
     7 int max(int a,int b,int c){
     8     int temp;
     9     temp = a>b ? a : b;
    10     return temp>c ? temp : c;
    11 }
    12 int main(){
    13     int i,j;
    14     while(scanf("%s%s",s1,s2)!=EOF){
    15         len1 = strlen(s1);
    16         len2 = strlen(s2);
    17         memset(dp,0,sizeof(dp));
    18         for(i=1;i<=len1;i++){
    19             for(j=1;j<=len2;j++){
    20                 if(s1[i-1] == s2[j-1])
    21                     dp[i][j] = dp[i-1][j-1] + 1;
    22                 dp[i][j] = max(dp[i][j],dp[i-1][j],dp[i][j-1]);
    23             }
    24         }
    25         printf("%d
    ",dp[len1][len2]);
    26     }
    27     return 0;
    28 }
  • 相关阅读:
    python数据类型
    集合(set)内置方法
    python第三天
    剑指offer-什么是1G/2G/3G/4G/5G
    经典交换实验-二层交换机实现pc隔离&vlan通信
    linux运维神器-htop&mtr
    三分钟速学linux-进程管理命令
    三分钟速学文件权限管理
    三分钟速学网卡管理配置-nmcli命令
    三分钟速学linux-centos/redhat常见包管理器
  • 原文地址:https://www.cnblogs.com/acm-bingzi/p/3258803.html
Copyright © 2011-2022 走看看