zoukankan      html  css  js  c++  java
  • TensorFlow-简单的卷积神经网络

    先弄懂卷积神经网络的原理,推荐这两篇博客:http://blog.csdn.net/yunpiao123456/article/details/52437794   http://blog.csdn.net/qq_25762497/article/details/51052861#%E6%A6%82%E6%8F%BD

     简单的测试程序如下(具体各参数代表什么可以百度):

     1 from tensorflow.examples.tutorials.mnist import input_data
     2 import tensorflow as tf
     3 
     4 mnist=input_data.read_data_sets("MNIST_data/",one_hot=True)
     5 sess=tf.InteractiveSession()
     6 
     7 def weight_variable(shape):
     8     initial=tf.truncated_normal(shape,stddev=0.1)
     9     return tf.Variable(initial)
    10 
    11 def bias_variable(shape):
    12     initial=tf.constant(0.1,shape=shape)
    13     return tf.Variable(initial)
    14 
    15 def conv2d(x,w):
    16     return tf.nn.conv2d(x,w,strides=[1,1,1,1],padding='SAME')
    17 
    18 def max_pool_2x2(x):
    19     return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
    20 
    21 x=tf.placeholder(tf.float32,[None,784])
    22 y_=tf.placeholder(tf.float32,[None,10])
    23 x_image=tf.reshape(x,[-1,28,28,1])
    24 
    25 w_conv1=weight_variable([5,5,1,32])
    26 b_conv1=bias_variable([32])
    27 h_conv1=tf.nn.relu(conv2d(x_image,w_conv1)+b_conv1)
    28 h_pool1=max_pool_2x2(h_conv1)
    29 
    30 w_conv2=weight_variable([5,5,32,64])
    31 b_conv2=bias_variable([64])
    32 h_conv2=tf.nn.relu(conv2d(h_pool1,w_conv2)+b_conv2)
    33 h_pool2=max_pool_2x2(h_conv2)
    34 
    35 w_fc1=weight_variable([7*7*64,1024])
    36 b_fc1=bias_variable([1024])
    37 h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
    38 h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1)+b_fc1)
    39 
    40 keep_prob=tf.placeholder(tf.float32)
    41 h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)
    42 
    43 w_fc2=weight_variable([1024,10])
    44 b_fc2=bias_variable([10])
    45 y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop,w_fc2)+b_fc2)
    46 
    47 cross_entropy=tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y_conv),reduction_indices=[1]))
    48 train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    49 
    50 correct_prediction=tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1))
    51 accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    52 
    53 tf.initialize_all_variables().run()
    54 for i in range(20000):
    55     batch=mnist.train.next_batch(50)
    56     if i%100==0:
    57         train_accuracy=accuracy.eval(feed_dict={x:batch[0],y_:batch[1],keep_prob:1.0})
    58         print("step %d,training accuracy %g"%(i,train_accuracy))
    59     train_step.run(feed_dict={x:batch[0],y_:batch[1],keep_prob:0.5})
    60 
    61 print("test accuracy %g"%accuracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels,keep_prob:1.0}))
    View Code

    运行结果:

     

  • 相关阅读:
    判断是否可以点击
    窗口截图
    设置等待操作
    时间控件处理
    eclipse小技巧
    Angular 学习1
    MVC 中引用Angularjs
    Bootstrap 侧边栏 导航栏
    C# 直接使用sql语句对数据库操作 (cmd.ExecuteNonQuery)
    sql 常用的语句(sql 创建表结构 修改列 清空表)
  • 原文地址:https://www.cnblogs.com/acm-jing/p/8524592.html
Copyright © 2011-2022 走看看