在这里再膜拜一下这两位大佬 Orz%%%
#include<iostream> #include<cstdio> #include<cmath> using namespace std; #define ll long long #define re register #define pb push_back #define mp make_pair #define P pair<int,int> const int N=1e7+10; const double Pi=acos(-1.0); void read(int &a) { a=0; int d=1; char ch; while(ch=getchar(),ch>'9'||ch<'0') if(ch=='-') d=-1; a=ch-'0'; while(ch=getchar(),ch>='0'&&ch<='9') a=a*10+ch-'0'; a*=d; } void write(int x) { if(x<0) putchar(45),x=-x; if(x>9) write(x/10); putchar(x%10+'0'); } struct complex { double x,y; complex (double xx=0,double yy=0){x=xx,y=yy;} }a[N],b[N]; int r[N],limit=1,l=0; complex operator + (complex a,complex b) {return complex(a.x+b.x,a.y+b.y);} complex operator - (complex a,complex b) {return complex(a.x-b.x,a.y-b.y);} complex operator * (complex a,complex b) {return complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);} inline void FFT(complex *A,int type) { for(re int i=0;i<limit;i++) if(i<r[i]) swap(A[i],A[r[i]]); for(re int mid=1;mid<limit;mid<<=1) { complex Wn(cos(Pi/mid),type*sin(Pi/mid));///mid只是当前要做的区间的一半 for(int R=mid<<1,j=0;j<limit;j+=R)///以间隔为R 为分块 { complex w(1,0); for(re int k=0;k<mid;k++,w=Wn*w)///枚举左区间,同时搞出右区间 { complex x=A[j+k],y=A[j+k+mid]; A[j+k]=x+w*y; A[j+k+mid]=x-w*y; } } } } int main() { int n,m; read(n); read(m); for(re int i=0;i<=n;i++) { int x; read(x); a[i].x=x; } for(re int i=0;i<=m;i++) { int x; read(x); b[i].x=x; } while(limit<=n+m) limit<<=1,l++; for(re int i=0;i<limit;i++) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1)); FFT(a,1); FFT(b,1); for(re int i=0;i<limit;i++) a[i]=a[i]*b[i]; FFT(a,-1); for(re int i=0;i<=n+m;i++) printf("%d ",(int)(a[i].x/limit+0.5)); return 0; }