Description
Farmer John commanded his cows to search for different sets of numbers that sum to a given number. The cows use only numbers that are an integer power of 2. Here are the possible sets of numbers that sum to 7:
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
1) 1+1+1+1+1+1+1
2) 1+1+1+1+1+2
3) 1+1+1+2+2
4) 1+1+1+4
5) 1+2+2+2
6) 1+2+4
Help FJ count all possible representations for a given integer N (1 <= N <= 1,000,000).
Input
A single line with a single integer, N.
Output
The number of ways to represent N as the indicated sum. Due to the potential huge size of this number, print only last 9 digits (in base 10 representation).
Sample Input
7
Sample Output
6
本题借鉴了一片博客,博主写的挺好的
题目大意:给定一个数用2的幂次方数,求可以有多少表达方式。
题解:动态规划和递推,如果i为偶数,dp[i]=dp[i/2]+dp[i-2]
偶数的时候分有一和没有一进行考虑,
有一的话就肯定有两个一,那么dp[i]=dp[i-2];
没有一的话,就是都除以2 dp[i]=dp[i/2];
i为奇数,肯定有一个一 dp[i]=dp[i-1];
代码:
#include<iostream> #include<cstring> using namespace std; const int M=1000000000; const int MAXN=1000010; int dp[MAXN]; int main() { int n; while(scanf("%d",&n)!=EOF) { dp[0]=dp[1]=1; for(int i=2;i<=n;i++) { if(i & 0x01) dp[i]=dp[i-1]; else dp[i]=(dp[i-2]+dp[i>>1])%M; } printf("%d ",dp[n]); } return 0; }