zoukankan      html  css  js  c++  java
  • LA 3263 欧拉定理

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1264

    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<iostream>
    #include<algorithm>
    #include<queue>
    using namespace std;
    const int maxn = 310;
    const int maxe = 100000;
    const int INF = 0x3f3f3f;
    
    struct Point{
        double x,y;
        Point(double x=0, double y=0) : x(x),y(y){ }    //构造函数
    };
    typedef Point Vector;
    
    Vector operator + (Vector A , Vector B){return Vector(A.x+B.x,A.y+B.y);}
    Vector operator - (Vector A , Vector B){return Vector(A.x-B.x,A.y-B.y);}
    Vector operator * (Vector A , double p){return Vector(A.x*p,A.y*p);}
    Vector operator / (Vector A , double p){return Vector(A.x/p,A.y/p);}
    
    bool operator < (const Point& a,const Point& b){
        return a.x < b.x ||( a.x == b.x && a.y < b.y);
    }
    const double eps = 1e-10;
    int dcmp(double x){
        if(fabs(x) < eps) return 0;
        else              return x < 0 ? -1 : 1;
    }
    bool operator == (const Point& a, const Point& b){
        return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
    }
    
    ///向量(x,y)的极角用atan2(y,x);
    double Dot(Vector A, Vector B){ return A.x*B.x + A.y*B.y; }
    double Length(Vector A)    { return sqrt(Dot(A,A)); }
    double Angle(Vector A, Vector B)  { return acos(Dot(A,B) / Length(A) / Length(B)); }
    
    double Cross(Vector A, Vector B)  { return A.x*B.y - A.y * B.x; }
    double Area2(Point A,Point B,Point C) { return Cross(B-A,C-A); }
    
    ///向量的逆时针旋转,rad 为旋转的角;
    Vector Rotate(Vector A, double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); }
    ///特殊的,下面函数计算向量的单位法向量,即左旋90,在长度归一化;
    Vector Normal(Vector A){
        double L = Length(A);
        return Vector(-A.y/L, A.x/L);
    }
    
    ///直线用参数式 P = P'+ t * v;P'为直线上一点,v为方向向量;
    ///t不受限制,为直线,t>0 为射线, 0=<t<=1为线段;
    ///推导暂时不会,下面计算直线P+tv和Q+tw的交点。调用前先确保两直线有唯一交点;即判定Cross(v,w) 非0;
    Point GetLineIntersecion(Point P, Vector v,Point Q,Vector w){
        Vector u = P - Q;
        double t = Cross(w,u)/Cross(v,w);
        return P + v*t;
    }
    
    ///求点到直线的距离,利用h*|AB| == AB(向量) * AP(向量);
    double DistanceToLine(Point P,Point A,Point B){
        Vector v1 = B - A, v2 = P - A;
        return fabs(Cross(v1,v2)) / Length(v1);
    }
    
    ///求点P到线段AB的距离,先看Q点在线段外还是内;利用点积就可以,
    double DistanceToSegment(Point P,Point A,Point B){
        if(A == B)  return Length(P-A);
        Vector v1 = B - A,v2 = P - A,v3 = P - B;
        if(dcmp(Dot(v1,v2)) < 0)       return Length(v2);
        else if(dcmp(Dot(v1,v3) > 0))  return Length(v2);
        else    return  fabs(Cross(v1,v2))/Length(v1);
    }
    ///如果要求Q的话:(当然满足Q在线段内),由公式Dot(v,P-(A+t'*v)) == 0 推出;
    Point GetLineProjection(Point P,Point A,Point B){
        Vector v = B - A;
        return A + v * (Dot(v,P-A)/Dot(v,v));
    }
    
    ///判定线段是否规范相交;
    bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2){
        double c1 = Cross(a2-a1,b1-a1), c2 = Cross(a2-a1,b2-a1),
               c3 = Cross(b2-b1,a1-b1), c4 = Cross(b2-b1,a2-b1);
        return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
    }
    ///如果允许在端点处相交:c1和c2都是0,表示两线段共线;如果只有其中一个为0,则一条线段的端点在另一条线段上;
    ///下面的代码判断一个点P是否在一条线段AB上(不包括A,B点);
    bool OnSegment(Point P,Point A,Point B){
        return dcmp(Cross(A-P,B-P)) == 0 && dcmp(Dot(P-A,P-B)) < 0;
    }
    
    ///多边形
    ///求面积
    double PolygonArea(Point* p,int n){
        double area = 0;
        for(int i=1;i<n-1;i++){
            area += Cross(p[i]-p[0],p[i+1]-p[0]);
        }
        return area/2;
    }
    
    
    int main()
    {
        //freopen("E:\acm\input.txt","r",stdin);
        //freopen("E:\acm\output.txt","w",stdout);
    
        Point p[maxn],v[maxn*maxn];
        int n,T=1;
        while(scanf("%d",&n)==1 && n){
           for(int i=0;i<n;i++) { scanf("%lf %lf",&p[i].x,&p[i].y); v[i] = p[i]; }
            n--;
            int vcnt = n, ecnt = n;
            for(int i=0;i<n;i++)
                for(int j=i+1;j<n;j++){
                   if( SegmentProperIntersection(p[i],p[i+1],p[j],p[j+1]) ){
                      v[vcnt++] = GetLineIntersecion(p[i],p[i+1]-p[i],p[j],p[j+1]-p[j]);
                   }
            }
            sort(v,v+vcnt);  ///排序等会好去重;
            vcnt = unique(v,v+vcnt) - v;  ///求出不重复的点的个数;
            
            for(int i=0;i<vcnt;i++)
                for(int j=0;j<n;j++)
                  if( OnSegment(v[i],p[j],p[j+1]) )
                      ecnt++;
            printf("Case %d: There are %d pieces.
    ",T++,ecnt+2-vcnt);
        }
    
        return 0;
    }
    View Code
  • 相关阅读:
    java&nbsp;split
    百度知道
    2014年10月27日
    2014年10月27日
    mybatis批量update,返回行数为-1
    mybatis批量插入:oracle和mysql的区别
    oracle数据库,mybatis批量insert,缺失values字段
    java后台接收json数据,报错com.alibaba.fastjson.JSONObject cannot be cast to xxx
    C++——运算符重载(上)
    C++——友元
  • 原文地址:https://www.cnblogs.com/acmdeweilai/p/3243416.html
Copyright © 2011-2022 走看看