zoukankan      html  css  js  c++  java
  • (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fraction.

    √ 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...

    By expanding this for the first four iterations, we get:

    1 + 1/2 = 3/2 = 1.5
    1 + 1/(2 + 1/2) = 7/5 = 1.4
    1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
    1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...

    The next three expansions are 99/70, 239/169, and 577/408, but the eighth expansion, 1393/985, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.

    In the first one-thousand expansions, how many fractions contain a numerator with more digits than denominator?

    题目大意:

    2的平方根可以被表示为无限延伸的分数:

    √ 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...

    将其前四次迭代展开,我们得到:

    1 + 1/2 = 3/2 = 1.5
    1 + 1/(2 + 1/2) = 7/5 = 1.4
    1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
    1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...

    接下来三次迭代的展开是99/70, 239/169, and 577/408, 但是第八次迭代的展开, 1393/985, 是第一个分子的位数超过分母的位数的例子。

    在前1000次迭代的展开中,有多少个的分子位数超过分母位数?

    //(Problem 57)Square root convergents
    // Completed on Wed, 12 Feb 2014, 04:45
    // Language: C
    //
    // 版权所有(C)acutus   (mail: acutus@126.com) 
    // 博客地址:http://www.cnblogs.com/acutus/
    #include<stdio.h>
    
    int add(int des[],int n1,int src[],int n2){
        int i,f;
        for(i=0 , f = 0 ; i < n1 || i < n2 ; i++){
            des[i] += ( f + src[i] ) ; 
            f = des[i]/10 ; 
            des[i] %= 10 ;
        }
        if(f)
            des[i++] = f ; 
        return i;
    }
    int main(){ 
        int num = 1 ,sum = 0 , k;
        int array[2][500] = {0} ; 
        int nn = 1 ,dn = 1 , f = 0 ;//nn分子长度,dn分母长度,f分子位置
    
        array[0][0] = 3 ;
        array[1][0] = 2 ;
        while(num<1000){ 
    //分子加分母放到分子位置成为下一个分母
        k = add(array[f],nn,array[1-f],dn);
    //分子加分母放到分母位置成为下一个分子
        nn = add( array[1-f],dn,array[f],k ) ; 
        dn = k ;
        f = 1 - f ; 
        if(nn > dn) sum++;
        num++;
        }
        printf("%d
    ",sum);
        return 0;
    }
    Answer:
    153
  • 相关阅读:
    UI和3D物体的堆叠响应
    UI中的事件系统EventSystem
    UI的管理
    学习笔记--2020年12月30日
    Java集合框架
    Java基本数据类型
    数据存储
    intent和手势探测
    即时消息Toast和对话框
    Android事件处理的三种方法
  • 原文地址:https://www.cnblogs.com/acutus/p/3545755.html
Copyright © 2011-2022 走看看