It is possible to show that the square root of two can be expressed as an infinite continued fraction.
2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...
By expanding this for the first four iterations, we get:
1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...
The next three expansions are 99/70, 239/169, and 577/408, but the eighth expansion, 1393/985, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.
In the first one-thousand expansions, how many fractions contain a numerator with more digits than denominator?
题目大意:
2的平方根可以被表示为无限延伸的分数:
2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...
将其前四次迭代展开,我们得到:
1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...
接下来三次迭代的展开是99/70, 239/169, and 577/408, 但是第八次迭代的展开, 1393/985, 是第一个分子的位数超过分母的位数的例子。
在前1000次迭代的展开中,有多少个的分子位数超过分母位数?
//(Problem 57)Square root convergents // Completed on Wed, 12 Feb 2014, 04:45 // Language: C // // 版权所有(C)acutus (mail: acutus@126.com) // 博客地址:http://www.cnblogs.com/acutus/ #include<stdio.h> int add(int des[],int n1,int src[],int n2){ int i,f; for(i=0 , f = 0 ; i < n1 || i < n2 ; i++){ des[i] += ( f + src[i] ) ; f = des[i]/10 ; des[i] %= 10 ; } if(f) des[i++] = f ; return i; } int main(){ int num = 1 ,sum = 0 , k; int array[2][500] = {0} ; int nn = 1 ,dn = 1 , f = 0 ;//nn分子长度,dn分母长度,f分子位置 array[0][0] = 3 ; array[1][0] = 2 ; while(num<1000){ //分子加分母放到分子位置成为下一个分母 k = add(array[f],nn,array[1-f],dn); //分子加分母放到分母位置成为下一个分子 nn = add( array[1-f],dn,array[f],k ) ; dn = k ; f = 1 - f ; if(nn > dn) sum++; num++; } printf("%d ",sum); return 0; }
Answer:
|
153 |