zoukankan      html  css  js  c++  java
  • Codeforce 22B Bargaining Table

    B. Bargaining Table

    Bob wants to put a new bargaining table in his office. To do so he measured the office room thoroughly and drew its plan: Bob's office room is a rectangular room n × m meters. Each square meter of the room is either occupied by some furniture, or free. A bargaining table is rectangular, and should be placed so, that its sides are parallel to the office walls. Bob doesn't want to change or rearrange anything, that's why all the squares that will be occupied by the table should be initially free. Bob wants the new table to sit as many people as possible, thus its perimeter should be maximal. Help Bob find out the maximum possible perimeter of a bargaining table for his office.

    Input

    The first line contains 2 space-separated numbers n and m (1 ≤ n, m ≤ 25) — the office room dimensions. Then there follow n lines with m characters 0 or 1 each. 0 stands for a free square meter of the office room. 1 stands for an occupied square meter. It's guaranteed that at least one square meter in the room is free.

    Output

    Output one number — the maximum possible perimeter of a bargaining table for Bob's office room.

    Sample test(s)
    input
    3 3
    000
    010
    000
    
    output
    8
    
    input
    5 4
    1100
    0000
    0000
    0000
    0000
    
    output
    16

    HDU 1505,1506的变形  只是由求面积变成了求周长   具体分析可见http://blog.csdn.net/iooden/article/details/38379065

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int N = 30;
    int l[N][N], r[N][N], h[N][N], n, m, ans;
    char a[N][N];
    int main()
    {
        scanf ("%d%d", &n, &m);
        for (int i = 1; i <= n; ++i)
        {
            h[i][0] = h[i][m + 1] = -1;
            scanf ("%s", a[i] + 1);
            for (int j = 1; j <= m; ++j)
            {
                if (a[i][j] == '0') h[i][j] = h[i - 1][j] + 1;
                l[i][j] = r[i][j] = j;
            }
        }
        int ans = 0;
        for (int i = 1; i <= n; ++i)
        {
            for (int j = m; j >= 1; --j)
                while (h[i][r[i][j] + 1] >= h[i][j]&&h[i][j])
                    r[i][j] = r[i][r[i][j] + 1];
    
            for (int j = 1; j <= m; ++j)
            {
                while (h[i][l[i][j] - 1] >= h[i][j]&&h[i][j])
                    l[i][j] = l[i][l[i][j] - 1];
                ans = max (ans, r[i][j] - l[i][j] + 1 + h[i][j]);
            }
        }
        printf ("%d
    ", 2 * ans);
        return 0;
    }
    

    另外这题数据比较小  也可以暴力枚举   枚举每点作为左上角 然后枚举合法的的长和宽, 判断形成的的矩阵是否全由 '0'组成, 如果是就更新结果

    #include<cstdio>
    #include<cstring>
    const int maxn = 30;
    int n, m;
    int a[maxn][maxn];
    int sum[maxn][maxn];
    int main()
    {
        while (~scanf ("%d%d", &n, &m))
        {
            memset (a, 0, sizeof (a));
            for (int i = 1; i <= n; i++)
                for (int j = 1; j <= m; j++)
                    scanf ("%1d", &a[i][j]);
            memset (sum, 0, sizeof (sum));
            for (int i = 1; i <= n; i++)
            {
                for (int j = 1; j <= m; j++)
                {
                    sum[i][j] = sum[i][j - 1] + sum[i - 1][j] - sum[i - 1][j - 1] + a[i][j];
                }
            }
            int x, y;
            int ans = 0;
            for (int x1 = 1; x1 <= n; x1++)
                for (int y1 = 1; y1 <= m; y1++)
                    for (int x2 = x1; x2 <= n; x2++)
                        for (int y2 = y1; y2 <= m; y2++)
                        {
                            int tmp = sum[x2][y2] + sum[x1 - 1][y1 - 1] - sum[x1 - 1][y2] - sum[x2][y1 - 1];
                            if (tmp == 0)
                            {
                                int dx = x2 - x1 + 1;
                                int dy = y2 - y1 + 1;
                                if (ans < (dx + dy) * 2) ans = (dx + dy) * 2;
                            }
                        }
            printf ("%d
    ", ans);
        }
        return 0;
    }

  • 相关阅读:
    .net framework v4.5.2
    sql数据库不允许保存更改和保存失败解决方法
    如何查看笔记本电脑型号
    Premiere 5.0/5 .5菜单详解
    Python编辑器英文菜单的中文翻译及解释
    SqlServer--常用数据查询
    pycharm上方菜单栏不见了如何恢复
    笔记本电脑的f1到f12怎么按
    C#的访问权限
    封装,继承和多态知识点汇总
  • 原文地址:https://www.cnblogs.com/acvay/p/3947307.html
Copyright © 2011-2022 走看看