zoukankan      html  css  js  c++  java
  • Codeforces Round #232 (Div. 2) On Sum of Fractions

    Let's assume that

    • v(n) is the largest prime number, that does not exceed n;
    • u(n) is the smallest prime number strictly greater than n.

    Find .

    Input

    The first line contains integer t (1 ≤ t ≤ 500) — the number of testscases.

    Each of the following t lines of the input contains integer n (2 ≤ n ≤ 109).

    Output

    Print t lines: the i-th of them must contain the answer to the i-th test as an irreducible fraction "p/q", where p, q are integers, q > 0.

    Sample test(s)
    input
    2
    2
    3
    output
    1/6
    7/30

     分析:把公式分解1/(p*q)=1/(p-q) *  (1/q-1/p) 然后求和发现公式:ans=(-2q+2*n-2*p+2+2*q*q)/(2*u*v);

     1 #include<cstdio>
     2 #include<cmath>
     3 #include<algorithm>
     4 using namespace std;
     5 bool isprime(unsigned long long x)
     6 {
     7     int idx=sqrt(x);
     8     for(int i=2; i<=idx; ++i)
     9         if(x%i==0)
    10             return false;
    11     return true;
    12 }
    13 int main()
    14 {
    15     int t;
    16     unsigned long long n;
    17     scanf("%d",&t);
    18     while(t--)
    19     {
    20         scanf("%I64u",&n);
    21         unsigned long long v=n,u=n+1;
    22         while(!isprime(v))
    23             --v;
    24         while(!isprime(u))
    25             ++u;
    26         unsigned long long p=v*u-2*u+2*n-2*v+2,q=2*v*u,tmp=__gcd(p,q);
    27         printf("%I64u/%I64u ",p/tmp,q/tmp);
    28     }
    29 }
  • 相关阅读:
    Linux基础命令—网卡
    SHOW SLAVE STATUS解读
    perf工具crash的问题
    python学习之-requests模块基础
    DELL IDRAC API接口开发文档翻译及client模块
    cobbler ks文件解释--转载
    django学习之- 动态验证码学习
    django学习之- Ajax
    django学习之- modelForm
    django学习之- json序列化
  • 原文地址:https://www.cnblogs.com/acvc/p/3571371.html
Copyright © 2011-2022 走看看